山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (9): 31-39.doi: 10.6040/j.issn.1671-7554.0.2024.1401
• “大数据赋能AI大模型驱动的多模态队列设计与分析”重点专题 • 上一篇
李晶1,2,鞠苇杭1,2,刘珂1,2
LI Jing1,2, JU Weihang1,2, LIU Ke1,2
摘要: 目的 基于单细胞转录组学数据,探究多种癌症组织中不同细胞类型的基因共表达规律。 方法 依托大规模公共单细胞转录组学数据,运用CS-CORE方法为6种常见的细胞类型在5种不同的癌症中分别构建了细胞类型特异性的基因共表达图谱。 结果 共获得30张高质量的基因共表达图谱。在所研究的细胞类型中,恶性细胞的共表达基因对数量最多,具有相对复杂的基因调控机制;跨癌症类型的分层聚类结果显示转录因子的调控广度在同一细胞类型中倾向于保守;此外,巨噬细胞具有最多的差异共表达基因对,巨噬细胞的基因调控网络可能易受肿瘤微环境的影响。 结论 本研究系统构建了癌症组织中细胞类型特异性的基因共表达图谱,并在泛癌视角下揭示了基因共表达的若干规律。
中图分类号:
| [1] Lee HK, Hsu AK, Sajdak J, et al. Coexpression analysis of human genes across many microarray data sets[J]. Genome Res, 2004, 14(6): 1085-1094. [2] Torkamani A, Dean B, Schork NJ, et al. Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia[J]. Genome Res, 2010, 20(4): 403-412. [3] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis[J]. Stat Appl Genet Mol Biol, 2005, 4: Article17. doi: 10.2202/1544-6115.1128 [4] Mostafavi S, Gaiteri C, Sullivan SE, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimers disease[J]. Nat Neurosci, 2018, 21(6): 811-819. [5] Hao RH, Zhang TP, Jiang F, et al. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expre-ssion[J]. Nat Commun, 2024, 15(1): 4890. doi: 10.1038/s41467-024-49263-4 [6] Su C, Zhang JF, Zhao HY. Estimating cell-type-specific gene co-expression networks from bulk gene expression data with an application to Alzheimer’s disease[J]. J Am Stat Assoc, 2024, 119(546): 811-824. [7] Harris BD, Crow M, Fischer S, et al. Single-cell co-expression analysis reveals that transcriptional modules are shared across cell types in the brain[J]. Cell Syst, 2021, 12(7): 748-756. [8] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587. [9] Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296. doi: 10.1186/s13059-019-1874-1 [10] Sarkar A, Stephens M. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis[J]. Nat Genet, 2021, 53(6): 770-777. [11] Kumar N, Mishra B, Athar M, et al. Inference of gene regulatory network from single-cell transcriptomic data using pySCENIC[J]. Methods Mol Biol, 2021, 2328: 171-182. doi: 10.1007/978-1-0716-1534-8_10 [12] Su C, Xu ZC, Shan XN, et al. Cell-type-specific co-expression inference from single cell RNA-sequencing data[J]. Nat Commun, 2023, 14(1): 4846. doi: 10.1038/s41467-023-40503-7 [13] Gavish A, Tyler M, Greenwald AC, et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours[J]. Nature, 2023, 618(7965): 598-606. [14] Shen WK, Chen SY, Gan ZQ, et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Res, 2023, 51(D1): D39-D45. [15] Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30. [16] Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool[J]. BMC Bioinformatics, 2013, 14: 128. doi: 10.1186/1471-2105-14-128 [17] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-W97. [18] Xie ZR, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with enrichr[J]. Curr Protoc, 2021, 1(3): e90. doi: 10.1002/cpz1.90 [19] Hao YH, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587. [20] Wickham H. ggplot2: elegant graphics for data analysis[M]. New York: Springer-Verlag, 2016. [21] Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016, 32(18): 2847-2849. [22] Yu GC, Wang LG, Han YY, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. [23] Hu XL, Hu YH, Wu FJ, et al. Integration of single-cell multi-omics for gene regulatory network inference[J]. Comput Struct Biotechnol J, 2020, 18: 1925-1938. doi: 10.1016/j.csbj.2020.06.033 [24] Doughty BR, Hinks MM, Schaepe JM, et al. Single-molecule states link transcription factor binding to gene expression[J]. Nature, 2024, 636(8043): 745-754. [25] Kciuk M, Gielecińska A, Koat D, et al. Cancer-associated transcription factors in DNA damage response [J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188757. doi: 10.1016/j.bbcan.2022.188757 [26] Farhan M, Silva M, Xing XG, et al. Role of FOXO transcription factors in cancer metabolism and angiogenesis[J]. Cells, 2020, 9(7): 1586. doi: 10.3390/cells9071586 [27] Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis[J]. Cancer Metastasis Rev, 2020, 39(3): 681-709. [28] Liu Y, Ao X, Jia Y, et al. The FOXO family of transcription factors: key molecular players in gastric cancer[J]. J Mol Med(Berl), 2022, 100(7): 997-1015. [29] Taneja N, Chauhan A, Kulshreshtha R, et al. HIF-1 mediated metabolic reprogramming in cancer: mechanisms and therapeutic implications[J]. Life Sci, 2024, 352: 122890. doi: 10.1016/j.lfs.2024.122890 [30] Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells[J]. Cells, 2021, 10(9): 2371. doi: 10.3390/cells10092371 [31] Rani S, Roy S, Singh M, et al. Regulation of transactivation at C-TAD domain of HIF-1 α by factor-inhibiting HIF-1 α(FIH-1): a potential target for therapeutic intervention in cancer[J]. Oxid Med Cell Longev, 2022, 2022: 2407223. doi: 10.1155/2022/2407223 [32] Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22(11): 5703. doi: 10.3390/ijms22115703 [33] Kiesel VA, Sheeley MP, Coleman MF, et al. Pyruvate carboxylase and cancer progression[J]. Cancer Metab, 2021, 9(1): 20. doi: 10.1186/s40170-021-00256-7 [34] Huang BL, Song BL, Xu CQ. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2(2): 132-141. [35] Shi QM, Xue C, Zeng YF, et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies[J]. Signal Transduct Target Ther, 2024, 9(1): 128. doi: 10.1038/s41392-024-01828-x [36] Li LX, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment[J]. Biomed Pharmacother, 2023, 161: 114504. doi: 10.1016/j.biopha.2023.114504 |
| [1] | 张润泽,薛付忠,杨帆. 基于多模态解耦对比学习的癌症亚型聚类方法[J]. 山东大学学报 (医学版), 2025, 63(8): 51-60. |
| [2] | 龚蓉,崔乃雪,陈恺悦,赵佳,单瑞洁,张训琪. 体感游戏在儿童癌症幸存者中的应用[J]. 山东大学学报 (医学版), 2025, 63(4): 94-99. |
| [3] | 王玉涛,孙岩. 单细胞转录组学与机器学习综合分析揭示腹主动脉瘤潜在生物标志物[J]. 山东大学学报 (医学版), 2024, 62(11): 40-53. |
| [4] | 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7. |
| [5] | 吴新莹,冯一平,常开锋,贾贤杰,薛付忠. 绿色覆盖与癌症发病的因果关联分析[J]. 山东大学学报 (医学版), 2022, 60(8): 115-119. |
| [6] | 侯茹男,邵頔,秦廷廷,尚美美,申玉珍,孙晓杰. 山东省癌症患者烟草使用情况及影响因素分析[J]. 山东大学学报 (医学版), 2022, 60(6): 102-106. |
| [7] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
| [8] | 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109. |
| [9] | 王振东,丁稳稳,凤志慧. 癫痫人群丙戊酸暴露与癌症发生风险的相关性分析[J]. 山东大学学报 (医学版), 2020, 58(4): 110-117. |
| [10] | 杨玉霞,臧素洁,冷安丽,王健. 以5种癌症患者住院费用为例探讨其药占比及医保支付[J]. 山东大学学报 (医学版), 2019, 57(4): 113-118. |
| [11] | 朱爱国,马振敕,王健. 利用上皮源性卵巢癌预后的多基因信息建立预测预后模型[J]. 山东大学学报 (医学版), 2019, 57(10): 80-85. |
| [12] | 华星星,孙晓杰,赵德利,刘卫东,倪志松,邹跃威,马仲锋,姚能亮,王家林,王海鹏. 山东省5县癌症患者治疗方式和医疗费用及其相关性分析[J]. 山东大学学报 (医学版), 2018, 56(6): 69-75. |
| [13] | 林萍珍,薛娇美,杨蓓,李萌,周麦琳,曹枫林. 基于Pearson相关系数的癌症患者创伤后成长与心理适应相关性的Meta分析[J]. 山东大学学报(医学版), 2017, 55(9): 110-121. |
| [14] | 蔡远楚,王家林,张军,姚能亮,孙晓杰. 山东省5县癌症幸存者工作状况及影响因素[J]. 山东大学学报(医学版), 2017, 55(4): 96-100. |
| [15] | 刘京生, 刘桂华, 杜昆, 赵倩, 翁韶波, 赵学英, 张喜庄, 金讯波. 中国人群中血清TK1对不同恶性肿瘤诊断价值的Meta分析[J]. 山东大学学报(医学版), 2015, 53(9): 71-79. |
|
||