您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (1): 81-89.doi: 10.6040/j.issn.1671-7554.0.2024.0558

• 临床研究 • 上一篇    

基于增强MRI的亚区域影像组学模型可预测乳腺癌患者新辅助化疗后的病理完全反应

李永1,崔书君1,杨飞1,张凡2,殷晓霞2   

  1. 河北北方学院附属第一医院 1.医学影像部;2.病理科, 河北 张家口 075000
  • 发布日期:2025-02-20
  • 通讯作者: 殷晓霞. E-mail:15830342695@163.com
  • 基金资助:
    河北省医学重点课题(20210091)

Enhanced MRI-based subregional radiomics model can predict pathological complete response after neoadjuvant chemotherapy in breast cancer patients

LI Yong1, CUI Shujun1, YANG Fei1, ZHANG Fan2, YIN Xiaoxia2   

  1. 1. Department of Medical Imaging;
    2. Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
  • Published:2025-02-20

摘要: 目的 基于对比增强MRI开发并验证预测乳腺癌患者新辅助化疗(neoadjuvant chemotherapy, NAC)后病理完全缓解(pathological complete response, pCR)的亚区域影像组学模型。 方法 回顾性纳入155例接受NAC的乳腺癌患者(训练组108名,验证组47名),采用K-means算法对每位患者的感兴趣区域进行亚区聚类,然后对每个亚区使用Pyradiomics软件包,提取患者对比增强MRI中的高维影像组学特征。利用Mann-Whitney U检验、斯皮尔曼相关系数和最小绝对值收敛和选择算子(least absolute shrinkage and selection operator, LASSO)算法进行特征筛选。筛选后的最优特征通过逻辑回归算法在训练集中建立各个亚区单模型,并采用相同的逻辑回归算法融合亚区单模型建立亚区总模型,使用列线图进行可视化,在验证集中对所有模型的效能进行验证。 结果 患者的临床病理因素在训练集和验证集中差异无统计学意义,而基于K-means算法患者的最佳聚类结果为5类,由5个亚区单模型融合建立的亚区总模型在训练集和验证集的受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under curve, AUC)分别为0.898(0.839~0.957)和0.828(0.695~0.961)。在验证集中,ROC曲线、临床决策曲线与校准曲线提示亚区总模型具有比亚区单模型更好的判别能力、校准能力与临床实用性。 结论 亚区总模型可揭示肿瘤异质性并帮助临床医生在治疗前准确预测NAC后的pCR,具有一定预测乳腺癌患者疗后预后的能力,表明人工智能在改善乳腺癌患者个体化治疗方面的潜力。

关键词: 影像组学, 新辅助化疗, 乳腺癌, 预测模型, 亚区分析

Abstract: Objective To develop and validate a subregional radiomics model based on contrast-enhanced MRI to predict pathological complete response(pCR)after neoadjuvant chemotherapy(NAC)in breast cancer patients. Methods A total of 155 breast cancer patients who underwent NAC were retrospectively included, with 108 in the training set and 47 in the validation set. Subregion clustering was performed for each patients region of interest by using the K-means algorithm, and then high-dimensional radiomics features in the patients contrast-enhanced MRI were extracted using the Pyradiomics software package for each subregion. Mann-Whitney U test, Spearman correlation coefficient and least absolute shrinkage and selection operator(LASSO)algorithm were utilized for feature screening. The filtered optimal features were used to build each subregion single model in the training set by Logistic regression algorithm, and the same algorithm was used to fuse the subregion single models to build the subregion total model, which was visualized by using the nomogram, and the effectiveness of all models was verified in the validation set. Results The clinicopathological factors of the patients were not statistically different between the training and validation sets. The best clustering results for patients based on the K-means algorithm were 5 classes, and the area under curve(AUC)of the receiver operating characteristic(ROC)of the total subarea model built from the fusion of the 5 subarea single models in the training set and validation set was 0.898( 0.839-0.957)and 0.828(0.695-0.961), respectively. In the validation set, the ROC curves, clinical decision curves and calibration curves suggested that the subarea total model had better discriminative ability, calibration ability and clinical utility than the subarea single model. Conclusion The subregion total model can reveal tumor heterogeneity and help clinicians accurately predict pCR after NAC before treatment and has some ability to predict the post-treatment prognosis, highlighting the potential of artificial intelligence in improving individualized treatment for breast cancer patients.

Key words: Radiomcis, Neoadjuvant chemotherapy, Breast cancer, Prediction model, Subregion analysis

中图分类号: 

  • R737.9
[1] 初竹秀, 赵文静, 李小燕, 等. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报(医学版), 2021, 59(9): 130-139. CHU Zhuxiu, ZHAO Wenjing, LI Xiaoyan, et al. Significance of neoadjuvant chemotherapy and molecular marker changes in 218 women with breast cancer[J]. Journal of Shandong University(Health Sciences), 2021, 59(9): 130-139.
[2] Haque W, Verma V, Hatch S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2018, 170(3): 559-567.
[3] Fayanju OM, Ren Y, Thomas SM, et al. The clinical significance of breast-only and node-only pathologic complete response(pCR)after neoadjuvant chemotherapy(NACT): a review of 20, 000 breast cancer patients in the national cancer data base(NCDB)[J]. Ann Surg, 2018, 268(4): 591-601.
[4] Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis[J]. Clin Cancer Res, 2020, 26(12): 2838-2848.
[5] Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression[J]. Br J Cancer, 2021, 125(2): 164-175.
[6] Wu J, Cao GH, Sun XL, et al. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy[J]. Radiology, 2018, 288(1): 26-35.
[7] Whybra P, Zwanenburg A, Andrearczyk V, et al. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights[J]. Radiology, 2024, 310(2): e231319. doi:10.1148/radiol.231319.
[8] 焦光丽, 石子馨, 陈蓉, 等. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报(医学版), 2023, 61(12): 62-69. JIAO Guangli, SHI Zixin, CHEN Rong, et al. Radiomics of enhanced CT in predicting the response to platinum-based chemotherapy for ovarian cancer[J]. Journal of Shandong University(Health Sciences), 2023, 61(12): 62-69.
[9] Qi YJ, Su GH, You C, et al. Radiomics in breast cancer: current advances and future directions[J]. Cell Rep Med, 2024, 5(9): 101719. doi:10.1016/j.xcrm.2024.101719.
[10] 王浩天, 于韬, 徐姝. MRI影像组学在乳腺癌新辅助化疗中应用的研究进展[J]. 中国临床医学影像杂志, 2023, 34(12): 892-896. WANG Haotian, YU Tao, XU Shu. Research progress on the application of MRI radiomics in neoadjuvant chemotherapy for breast cancer[J]. Journal of China Clinic Medical Imaging, 2023, 34(12): 892-896.
[11] 张琦,林青,王海波,等. 乳癌新辅助化疗DCE-MRI预测病理完全缓解的应用价值[J].青岛大学学报(医学版), 2023, 59(6): 840-844. ZHANG Qi, LIN Qing, WANG Haibo, et al. Application of dynamic contrast-enhanced magnetic resonance imaging in prediction of pathological complete response of breast cancer treated by neoadjuvant chemotherapy[J]. Journal of Qingdao University(Medical Sciences), 2023, 59(6): 840-844.
[12] Verma R, Correa R, Hill VB, et al. Tumor habitat-derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma are associated with key morphologic attributes at histopathologic examination: a feasibility study[J]. Radiol Artif Intell, 2020, 2(6): e190168. doi:10.1148/ryai.2020190168.
[13] Xie CY, Yang PF, Zhang XB, et al. Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J]. EBioMedicine, 2019, 44: 289-297. doi:10.1016/j.ebiom.2019.05.023.
[14] Feng SQ, Yin JD. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer[J]. Quant Imaging Med Surg, 2023, 13(10): 6735-6749.
[15] Ivanova M, Porta FM, D’Ercole M, et al. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer[J]. Virchows Arch, 2024, 484(1): 3-14.
[16] Cheng DD, Huang JL, Zhang SL, et al. K-means clustering with natural density peaks for discovering arbitrary-shaped clusters[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(8): 11077-11090.
[17] van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107.
[18] Pripp AH. Pearsons or Spearmans correlation coefficients[J]. Tidsskr Nor Laegeforen, 2018, 138(8). doi: 10.4045/tidsskr.18.0042.
[19] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective[J]. J R Stat Soc Ser B Stat Methodol, 2011, 73(3): 273-282.
[20] Zhang JQ, Wu Q, Yin W, et al. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients[J]. BMC Cancer, 2023, 23(1): 431. doi:10.1186/s12885-023-10817-2.
[21] Bertucci F, Finetti P, Viens P, et al. EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer[J]. Cancer Lett, 2014, 355(1): 70-75.
[22] Straver ME, Glas AM, Hannemann J, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer[J]. Breast Cancer Res Treat, 2010, 119(3): 551-558.
[23] Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Eur J Cancer, 2021, 147: 95-105. doi:10.1016/j.ejca.2021.01.028.
[24] Huang YH, Zhu T, Zhang XL, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J]. EClinicalMedicine, 2023, 58: 101899. doi:10.1016/j.eclinm.2023.101899.
[25] Shi ZW, Huang XM, Cheng ZL, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2023, 308(1): e222830. doi:10.1148/radiol.222830.
[1] 余之刚,郑超. 乳腺癌多学科诊疗的现状、挑战与创新模式[J]. 山东大学学报 (医学版), 2025, 63(1): 1-9.
[2] 山东省医学会乳腺疾病多学科联合委员会. 乳腺癌多学科协作诊疗山东共识(2024年版)[J]. 山东大学学报 (医学版), 2025, 63(1): 10-16.
[3] 程跃启,王斐,于理想,郑超,余之刚. 曲妥珠单抗致HER2阳性乳腺癌患者心脏毒性的研究进展[J]. 山东大学学报 (医学版), 2025, 63(1): 17-24.
[4] 王敏,李习平,檀军,邱梅,侯泽宇,田莹,罗鸿莹,范超文,齐玲,俞琦,谢薇. 慢病毒载体介导Gag-Caspase-8诱导三阴性乳腺癌原代细胞凋亡及S期阻滞[J]. 山东大学学报 (医学版), 2025, 63(1): 25-34.
[5] 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42.
[6] 宋雅雯,郭联涛,孔德光,孙圣荣. VTCN1导致HR+乳腺癌预后不良及内分泌治疗耐药[J]. 山东大学学报 (医学版), 2025, 63(1): 43-59.
[7] 刘晶晶,庞婧,赵晓丹,林昕,付敏,陈静静. 基于乳腺X线摄影及DCE-MRI机器学习模型预测乳腺癌新辅助治疗后病理完全缓解:双中心研究[J]. 山东大学学报 (医学版), 2025, 63(1): 60-72.
[8] 孙婧,杨瑞敏,王聪,张月,罗兵. 基于术前超声、炎症指标及超声影像组学联合模型预测乳腺癌腋窝淋巴结转移[J]. 山东大学学报 (医学版), 2025, 63(1): 73-80.
[9] 刘向荣,张新胜,杨荩冉,杨雪艳,刘钊,刘英华. ω-6/ω-3多不饱和脂肪酸比值对不同肿瘤发病风险的系统综述和Meta分析[J]. 山东大学学报 (医学版), 2024, 62(8): 34-48.
[10] 孙丽娜,白红艳,牛宗格,张福帅,曲仪庆. 基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型[J]. 山东大学学报 (医学版), 2024, 62(7): 10-20.
[11] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[12] 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68.
[13] 吴思雨,沈业隆,王锡明. 影像组学预测原发性中枢神经系统淋巴瘤的Ki-67标记指数[J]. 山东大学学报 (医学版), 2024, 62(11): 67-72.
[14] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[15] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
Viewed
Full text
11


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!