您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (8): 34-48.doi: 10.6040/j.issn.1671-7554.0.2024.0589

• • 上一篇    

ω-6/ω-3多不饱和脂肪酸比值对不同肿瘤发病风险的系统综述和Meta分析

刘向荣,张新胜,杨荩冉,杨雪艳,刘钊,刘英华   

  • 发布日期:2024-09-20
  • 通讯作者: 刘英华. E-mail:liuyinghua77@163.com
  • 基金资助:
    军队重点保健项目(22BJZ20)

Association of the ratio of ω-6/ω-3 polyunsaturated fatty acids with various tumor types risk: a systematic review and Meta-analysis

LIU Xiangrong, ZHANG Xinsheng, YANG Jinran, YANG Xueyan, LIU Zhao, LIU Yinghua   

  1. Department of Nutrition, the First Medical Center of PLA General Hospital, Beijing 100853, China
  • Published:2024-09-20

摘要: 目的 系统评价ω-6/ω-3多不饱和脂肪酸(omega-6/omega-3 polyunsaturated fatty acids)比值与不同肿瘤发病风险的关系。 方法 系统检索9个数据库(Pubmed、Embase、Web of Science、Cochrane Library、Medline、知网、维普、万方、生物医学文献数据库)截至2024年1月31日有关ω-6/ω-3 PUFAs比值与肿瘤发病风险关系的研究,利用纽卡斯尔-渥太华量表(Newcastle-Ottawa Scale,NOS)对最终纳入的文献进行质量评价,R4.3.3软件进行Meta分析。 结果 共纳入27篇ω-6/ω-3PUFAs比值对不同肿瘤发病率影响的研究,其中队列研究7项,病例对照研究20项。共纳入研究对象197 401例,病例组和暴露组81 950例,对照组和非暴露组115 451例。Meta分析结果显示: ω-6/ω-3PUFAs比值与不同肿瘤发病风险关联无统计学意义(OR=1.03,95%CI:0.98~1.09,P=0.18)。亚组分析显示,较高的ω-6/ω-3PUFAs比值会增加乳腺癌的发病风险(OR=1.05,95%CI:1.01~1.10,P=0.01),而与前列腺癌(OR=1.26,95%CI:0.67~2.38,P=0.47),结直肠癌(OR=0.99,95%CI:0.89~1.10,P=0.85)的发病风险关联无统计学意义。在非欧美地区,较高的ω-6/ω-3PUFAs比值会显著增加不同肿瘤发病的风险(OR=1.24,95%CI:1.01~1.51,P=0.04),而在欧美地区则没有统计学意义(OR=1.02,95%CI:0.97~1.07,P=0.46),在评估暴露指标与不同肿瘤发病风险的关系中,饮食摄入(OR=1.04, 95%CI: 0.98~1.09,P=0.17)和基于血液(红细胞、血清、血浆)测定的ω-6/ω-3PUFAs比值(OR=1.00, 95%CI:0.92~1.09,P=0.96),均无统计学意义的关联。针对乳腺癌的亚组分析显示,在欧美地区,较高的ω-6/ω-3PUFAs比值会增加乳腺癌的发病风险(OR=1.05,95%CI:1.01~1.11,P=0.03),但在非欧美地区则无统计学意义(OR=1.05,95%CI:0.97~1.14,P=0.22)。较高的饮食摄入ω-6/ω-3PUFAs比值会增加乳腺癌的发病风险(OR=1.05,95%CI:1.01~1.10,P=0.02),而血液中(红细胞、血清、血浆)ω-6/ω-3PUFAs比值对乳腺癌发病的风险关联却没有统计学意义(OR=1.07,95%CI:0.93~1.23,P=0.37)。 结论 ω-6/ω-3PUFAs比值与不同肿瘤发病风险的影响尚无明确结论,但较高的ω-6/ω-3PUFAs比值会增加乳腺癌的发病风险,尤其是在欧美地区。而在非欧美地区,较高的ω-6/ω-3PUFAs比值会显著增加不同肿瘤发病的风险。此外,较高的饮食摄入ω-6/ω-3PUFAs比值也会增加乳腺癌的发病风险。上述观点有待通过更多前瞻性干预实验加以实证确认。

关键词: ω-3多不饱和脂肪酸, ω-6/ω-3多不饱和脂肪酸比值, 肿瘤发病风险, 乳腺癌, Meta分析

Abstract: Objective The purpose of this study was to systematically evaluate the relationship between the ratio of ω-6/ω-3 polyunsaturated fatty acids(omega-6/omega-3 polyunsaturated fatty acids)and the risk of various types of tumors. Methods A systematic search was carried out in 9 databases(Pubmed, Embase, Web of Science, Cochrane Library, Medline, CNKI, VIP, Wanfang, CBM)up to January 31, 2024, for studies related to the association between the ratio of ω-6/ω-3PUFAs and tumor incidence risk. The quality of the finally included literature was assessed using the Newcastle-Ottawa Scale(NOS). Meta-analysis was performed using the R version 4.3.3 software. Results A total of 27 studies investigating the effect of the ratio of ω-6/ω-3PUFAs on different tumor incidence rates were included, comprising 7 cohort studies and 20 case-control studies. A total of 197,401 subjects were involved, with 81,950 cases and exposed participants and 115,451 controls and unexposed participants.Meta-analysis results showed that there was no statistically significant association between the ratio of ω-6/ω-3 PUFAs and the incidence risk of different tumors(OR=1.03, 95%CI:0.98-1.09, P=0.18). Subgroup analysis revealed that a higher ratio of ω-6/ω-3 PUFAs was associated with an increased risk of breast cancer incidence(OR=1.05, 95%CI:1.01-1.10,P=0.01), but not with prostate cancer(OR=1.26, 95%CI:0.67-2.38, P=0.47)or colorectal cancer(OR=0.99, 95%CI:0.89-1.10,P=0.85). In non-European and American regions, a higher ω-6/ω-3PUFAs ratio significantly increased the risk of various tumor incidences(OR=1.24, 95%CI:1.01-1.51, P=0.04), while in European and American regions, this association was not statistically significant(OR=1.02, 95%CI:0.97-1.07, P=0.46). When evaluating the relationship between exposure indicators and the incidence risk of various cancers, neither dietary intake(OR=1.04, 95%CI:0.98-1.09, P=0.17)nor the ratio of ω-6/ω-3PUFAs measured in blood components(red blood cells, serum, plasma)(OR=1.00, 95%CI:0.92-1.09, P=0.96)showed statistically significant associations with cancer risk. Subgroup analysis focusing on breast cancer revealed that in European and American regions, a higher ω-6/ω-3PUFAs ratio was associated with an increased risk of breast cancer incidence(OR=1.05, 95%CI:1.011.11, P=0.03), but this link was not statistically significant in non-European and American regions(OR=1.05, 95%CI:0.97-1.14, P=0.22). A higher dietary intake ratio of ω-6/ω-3PUFAs was correlated with an elevated risk of breast cancer incidence(OR=1.05, 95%CI:1.01-1.10, P=0.02), whereas the ratio of ω-6/ω-3PUFAs in blood(red blood cells, serum, plasma)did not show a statistically significant association with breast cancer risk(OR=1.07, 95%CI:0.93-1.23, P=0.37). Conclusion The influence of the ratio of ω-6/ω-3PUFAs on the risk of different tumors remains inconclusive. However, a higher ω-6/ω-3PUFAs ratio is associated with an increased risk of breast cancer, particularly in the European and American regions. In non-European and American regions, a higher ratio was found to significantly increase the risk of various types of tumor. Furthermore, a higher dietary ratio of ω-6/ω-3PUFAs intake is also associated with an increased risk of breast cancer development. These findings warrant further confirmation through additional prospective interventional studies.

Key words: ω-3 polyunsaturated fatty acids, ω-6/ω-3 polyunsaturated fatty acids ratio, Risk of carcinogenesis, Breast cancer, Meta-analysis

中图分类号: 

  • R73
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] 姚一菲,孙可欣,郑荣寿.《2022全球癌症统计报告》分析解读:中国与全球对比[J].中国普外基础与临床杂志, 2024, 31(7): 769-780.
[3] Zanoaga O, Jurj A, Raduly L, et al. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer[J]. Exp Ther Med, 2018, 15(2): 1167-1176.
[4] 李超友, 王安洋. 中心型肥胖与头颈癌的关系[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 120-125. LI Chaoyou, WANG Anyang. The relationship between central obesity and head and neck cancer[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125.
[5] Nindrea RD, Aryandono T, Lazuardi L, et al. Association of dietary intake ratio of n-3/n-6 polyunsaturated fatty acids with breast cancer risk in western and Asian countries: a meta-analysis[J]. Asian Pac J Cancer Prev, 2019, 20(5): 1321-1327.
[6] Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, et al. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins[J]. Int J Mol Sci, 2022, 23(11): 6179. doi:10.3390/ijms23116179.
[7] Liput KP, Lepczyński A, Oguszka M, et al. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis[J]. Int J Mol Sci, 2021, 22(13): 6965. doi:10.3390/ijms22136965.
[8] Ardisson Korat AV, Chiu YH, Bertrand KA, et al. A prospective analysis of red blood cell membrane polyunsaturated fatty acid levels and risk of non-Hodgkin lymphoma[J]. Leuk Lymphoma, 2022, 63(14): 3351-3361.
[9] Bilodeau JF, Gevariya N, Larose J, et al. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth[J]. Prostaglandins Leukot Essent Fatty Acids, 2021, 164: 102215. doi:10.1016/j.plefa.2020.102215.
[10] Zhou, Lin Z, Xie S, et al. Interplay of chronic obstructive pulmonary disease and colorectal cancer development: unravelling the mediating role of fatty acids through a comprehensive multi-omics analysis[J].J Transl Med, 2023, 21(1): 587. doi:10.1186/s12967-023-04278-1.
[11] Yu C, Han Y, Wang M, et al. Concordance of ctDNA and tissue mutations in NSCLC: A meta-analysis[J]. Cell Mol Biol(Noisy-le-grand), 2023, 69(8): 89-95.
[12] Chen Y, Wang J, Wu L, et al. Efficacy of Chinese herbal medicine on nasal itching in children with allergic rhinitis: a systematic review and meta-analysis[J]. Front Pharmacol, 2023,14: 1240917. doi:10.3389/fphar.2023.1240917.
[13] Fei XX, Wang SQ, Li JY, et al. The efficacy and safety of sodium nitroprusside in the treatment of schizophrenia: protocol for an updated systematic review and meta-analysis[J]. PLoS One, 2023, 18(3): e0283185. doi:10.1371/journal.pone.0283185.
[14] Wirfält E, Vessby B, Mattisson I, et al. No relations between breast cancer risk and fatty acids of erythrocyte membranes in postmenopausal women of the Malmö Diet Cancer cohort(Sweden)[J]. Eur J Clin Nutr, 2004, 58(5): 761-770.
[15] Khankari NK, Bradshaw PT, Steck SE, et al. Polyunsaturated fatty acid interactions and breast cancer incidence: a population-based case-control study on Long Island, New York[J]. Ann Epidemiol, 2015, 25(12): 929-935.
[16] Shannon J, King IB, Moshofsky R, et al. Erythrocyte fatty acids and breast cancer risk: a case-control study in Shanghai, China[J]. Am J Clin Nutr, 2007, 85(4): 1090-1097.
[17] Park SY, Kolonel LN, Henderson BE, et al. Dietary fat and breast cancer in postmenopausal women according to ethnicity and hormone receptor status: the Multiethnic Cohort Study[J]. Cancer Prev Res, 2012, 5(2): 216-228.
[18] Kuriki K, Hirose K, Wakai KJ, et al. Breast cancer risk and erythrocyte compositions of n-3 highly unsaturated fatty acids in Japanese[J]. Int J Cancer, 2007, 121(2): 377-385.
[19] Bassett JK, Hodge AM, English DR, et al. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk[J]. Cancer Causes Control, 2016, 27(6): 759-773.
[20] Vatten LJ, Bjerve KS, Andersen A, et al. Polyunsaturated fatty acids in serum phospholipids and risk of breast cancer: a case-control study from the Janus serum bank in Norway[J]. Eur J Cancer, 1993,29A(4):532-538.
[21] Murff HJ, Shu XO, Li HL, et al. Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study[J]. Int J Cancer, 2011, 128(6): 1434-1441.
[22] Wakai KJ, Tamakoshi K, Date C, et al. Dietary intakes of fat and fatty acids and risk of breast cancer: a prospective study in Japan[J]. Cancer Sci, 2005, 96(9):590-599.
[23] Chajès V, Thiébaut ACM, Rotival M, et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study[J]. Am J Epidemiol, 2008, 167(11): 1312-1320.
[24] Staessen L, De Bacquer D, De Henauw S, et al. Relation between fat intake and mortality: an ecological analysis in Belgium[J].Eur J Cancer Prev, 1997, 6(4): 374-381.
[25] Takata Y, King IB, Neuhouser ML, et al. Association of serum phospholipid fatty acids with breast cancer risk among postmenopausal cigarette smokers[J]. Cancer Causes Control, 2009, 20(4): 497-504.
[26] Goodstine SL, Zheng TZ, Holford TR, et al. Dietary(n-3)/(n-6)fatty acid ratio: possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women[J]. J Nutr, 2003, 133(5): 1409-1414.
[27] Pouchieu C, Chajès V, Laporte F, et al. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk - modulation by antioxidants: a nested case-control study[J]. PLoS One, 2014, 9(2): e90442. doi:10.1371/journal.pone.0090442.
[28] Thiébaut ACM, Chajès V, Gerber M, et al. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer[J]. Int J Cancer, 2009, 124(4): 924-931.
[29] Shafie F, Tajadod S, Aslany Z, et al. Breast cancer and dietary fat quality indices in Iranian women: a case-control study[J]. Front Oncol,2023,12:993397.doi:10.3389/fonc.2022.993397.
[30] Dydjow-Bendek D, Zago zd zon P. Total dietary fats, fatty acids, and omega-3/omega-6 ratio as risk factors of breast cancer in the Polish population-a case-control study[J]. In Vivo, 2020, 34(1): 423-431.
[31] Williams CD, Whitley BM, Hoyo C, et al. A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer[J]. Nutr Res, 2011, 31(1): 1-8.
[32] Sadeghi H, Lynch CF, Field WR, et al. Dietary omega-6/omega-3 fatty acids and risk of prostate cancer; Is there any potential interaction by organophosphate insecticides among the agricultural health study population[J]. Cancer Epidemiol, 2023, 85: 102410. doi:10.1016/j.canep.2023.102410.
[33] Park SY, Wilkens LR, Henning SM, et al. Circulating fatty acids and prostate cancer risk in a nested case-control study: the Multiethnic Cohort[J]. Cancer Causes Control, 2009, 20(2): 211-223.
[34] Wang L, Hang D, He XS, et al. A prospective study of erythrocyte polyunsaturated fatty acids and risk of colorectal serrated polyps and conventional adenomas[J]. Int J Cancer, 2021, 148(1): 57-66.
[35] Aglago EK, Huybrechts I, Murphy N, et al. Consumption of fish and long-chain n-3 polyunsaturated fatty acids is associated with reduced risk of colorectal cancer in a large European cohort[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 654-666.
[36] Pot GK, Geelen A, van Heijningen EM B, et al. Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study[J]. Int J Cancer, 2008, 123(8): 1974-1977.
[37] Mo A, Wu R, Grady JP, et al. Associations of dietary fat with risk of early neoplasia in the proximal colon in a population-based case-control study[J]. Cancer Causes Control, 2018, 29(7): 667-674.
[38] Arem H, Neuhouser ML, Irwin ML, et al. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study[J]. Eur J Nutr, 2013, 52(3): 1251-1260.
[39] Matejcic M, Lesueur F, Biessy C, et al. Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort[J]. Int J Cancer, 2018, 143(10): 2437-2448.
[40] Ben Fradj MK, Ouanes Y, Hadj-Taieb S, et al. Decreased oleic acid and marine n - 3 polyunsaturated fatty acids in Tunisian patients with urothelial bladder cancer[J]. Nutr Cancer, 2018, 70(7): 1043-1050.
[41] Dydjow-Bendek D, Zago zd zon P. Total dietary fats, fatty acids, and omega-3/omega-6 ratio as risk factors of breast cancer in the Polish population - a case-control study[J]. In Vivo, 2020, 34(1): 423-431.
[42] Yang B, Ren XL, Wang ZY, et al. Biomarker of long-chain n-3 fatty acid intake and breast cancer: Accumulative evidence from an updated meta-analysis of epidemiological studies[J]. Crit Rev Food Sci Nutr, 2019, 59(19): 3152-3164.
[43] Lira LG, Justa RMDE, Carioca AAF, et al. Plasma and erythrocyte ω-3 and ω-6 fatty acids are associated with multiple inflammatory and oxidative stress biomarkers in breast cancer[J]. Nutrition, 2019, 58: 194-200. doi:10.1016/j.nut.2018.07.115.
[44] Simopoulos A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity[J]. Nutrients, 2016, 8(3): 128. doi:10.3390/nu8030128.
[45] Aronson WJ, Kobayashi N, Barnard RJ, et al. Phase II prospective randomized trial of a low-fat diet with fish oil supplementation in men undergoing radical prostatectomy[J]. Cancer Prev Res, 2011, 4(12): 2062-2071.
[46] Sadeghi H, Lynch CF, Field WR, et al. Dietary omega-6/omega-3 fatty acids and risk of prostate cancer; Is there any potential interaction by organophosphate insecticides among the agricultural health study population[J]. Cancer Epidemiol, 2023, 85: 102410. doi:10.1016/j.canep.2023.102410.
[47] Simopoulos A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity[J]. Nutrients, 2016, 8(3): 128. doi:10.3390/nu8030128.
[48] Lu Y, Li D, Wang L, et al. Comprehensive Investigation on Associations between Dietary Intake and Blood Levels of Fatty Acids and Colorectal Cancer Risk[J]. Nutrients, 2023,15(3): 730. doi:10.3390/nu15030730.
[49] Sasazuki S, Inoue M, Iwasaki M, et al. Intake of n-3 and n-6 polyunsaturated fatty acids and development of colorectal cancer by subsite: Japan Public Health Center-based prospective study[J]. Int J Cancer, 2011, 129(7): 1718-1729.
[1] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[2] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[3] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
[4] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[5] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[6] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[7] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[8] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[9] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[10] 周亚杰,王斐,于理想,余之刚. 女性乳腺癌保乳手术决策相关因素[J]. 山东大学学报 (医学版), 2022, 60(12): 1-6.
[11] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[12] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[13] 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118.
[14] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
[15] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!