您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (1): 73-80.doi: 10.6040/j.issn.1671-7554.0.2024.0810

• 临床研究 • 上一篇    

基于术前超声、炎症指标及超声影像组学联合模型预测乳腺癌腋窝淋巴结转移

孙婧1,杨瑞敏2,王聪3,张月4,罗兵2   

  1. 1.河北北方学院研究生学院, 河北 张家口 075000;2.河北北方学院附属第一医院超声医学科, 河北 张家口 075000;3.河北北方学院附属第一医院放射治疗科, 河北 张家口 075000;4.河北北方学院附属第一医院乳腺外科, 河北 张家口 075000
  • 发布日期:2025-02-20
  • 通讯作者: 杨瑞敏. E-mail:yrm6810@126.com
  • 基金资助:
    河北省医学科学研究课题计划项目(No20220595)

Combined models based on preoperative ultrasound, inflammatory indicators and ultrasound radiomics for predicting axillary lymph node metastasis of breast cancer

SUN Jing1, YANG Ruimin2, WANG Cong3, ZHANG Yue4, LUO Bing2   

  1. 1. Graduate School, Hebei North University, Zhangjiakou 075000, Hebei, China;
    2. Department of Ultrasound, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China;
    3. Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China;
    4. Department of Breast Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
  • Published:2025-02-20

摘要: 目的 探讨基于术前超声特征、炎症指标及超声影像组学特征构建的模型预测乳腺癌腋窝淋巴结(axillary lymph node, ALN)转移的价值。 方法 回顾性分析175例乳腺癌患者的乳腺超声图像和临床资料,使用3D Slicer软件勾画感兴趣区并提取影像组学特征,运用组间相关系数、皮尔森相关系数和递归特征消除法筛选特征,计算影像组学评分(radiomics score, Radscore),构建影像组学模型。通过单因素、多因素逻辑回归筛选临床危险因素构建临床模型,加入Radscore构建联合预测模型。使用受试者工作特征(receiver operating characteristic, ROC)曲线、校准曲线及决策曲线分析评估各模型的预测效能和临床价值。 结果 18个影像组学特征被纳入影像组学模型,肿瘤大小、超声ALN状态和血小板/淋巴细胞比值(platelet to lymphocyte ratio, PLR)被纳入临床模型,肿瘤大小、超声ALN状态、PLR与Radscore被纳入联合预测模型。联合预测模型的预测效能最高,在训练集和验证集的曲线下面积(area under the curve, AUC)分别为0.935、0.858。 结论 基于肿瘤大小、超声ALN状态、炎症指标PLR及超声影像组学构建的联合预测模型能有效预测乳腺癌患者ALN转移。

关键词: 乳腺癌, 腋窝淋巴结转移, 超声检查, 影像组学, 炎症指标

Abstract: Objective To investigate the value of models based on preoperative ultrasound characteristics, inflammatory indicators and ultrasound radiomics features in predicting axillary lymph node(ALN)metastasis of breast cancer. Methods The breast ultrasound images and clinical data of 175 breast cancer patients were retrospectively analyzed. The 3D Slicer software was used to outline the region of interest and extract the radiomics features. The interclass correlation coefficient, Pearson correlation coefficients and recursive feature elimination were used to select the features. After the radiomics score(Radscore)was calculated, the radiomics model was constructed. The clinical model was constructed by screening clinical risk factors through univariate and multivariate Logistic regression, and then the Radscore was added to construct a combined prediction model. The predictive efficacy and clinical value of the models were assessed with the receiver operating characteristic(ROC)curve, calibration curve, and decision curve. Results Eighteen radiomics features were included in the radiomics model, and tumor size, ultrasound ALN status and platelet to lymphocyte ratio(PLR)were included in the clinical model. The tumor size, ultrasound ALN status, PLR and Radscore were included in the combined prediction model. The combined prediction model had the highest prediction efficacy. In the training and validation sets, the area under the curve(AUC)of the combined prediction model were 0.935 and 0.858, respectively. Conclusion The combined prediction model based on tumor size, ultrasound ALN status, inflammatory indicator PLR and ultrasound radiomics is effective in predicting ALN metastasis in breast cancer patients.

Key words: Breast cancer, Axillary lymph node metastasis, Ultrasonography, Radiomics, Inflammatory indicators

中图分类号: 

  • R445.1
[1] Siegel R, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74: 12-49. doi:10.3322/caac.21820.
[2] Chang JM, Leung JWT, Moy L, et al. Axillary nodal evaluation in breast cancer: state of the art[J]. Radiology, 2020, 295(3): 500-515.
[3] Pilger TL, Francisco DF, Dos Reis FJC. Effect of sentinel lymph node biopsy on upper limb function in women with early breast cancer: a systematic review of clinical trials[J]. Eur J Surg Oncol, 2021, 47(7): 1497-1506.
[4] Liu H, Zou LW, Xu N, et al. Deep learning radiomics based prediction of axillary lymph node metastasis in breast cancer[J]. NPJ Breast Cancer, 2024, 10(1): 22. doi:10.1038/s41523-024-00628-4.
[5] Ye XL, Zhang XX, Lin ZT, et al. Ultrasound-based radiomics nomogram for predicting axillary lymph node metastasis in invasive breast cancer[J]. Am J Transl Res, 2024, 16(6): 2398-2410.
[6] Sun C, Gong XT, Hou L, et al. A nomogram based on conventional and contrast-enhanced ultrasound radiomics for the noninvasively prediction of axillary lymph node metastasis in breast cancer patients[J]. Front Oncol, 2024, 14: 1400872. doi:10.3389/fonc.2024.1400872.
[7] Faria SS, Giannarelli D, Cordeiro de Lima VC, et al. Development of a prognostic model for early breast cancer integrating neutrophil to lymphocyte ratio and clinical-pathological characteristics[J]. Oncologist, 2024, 29(4): e447-e454.
[8] 潘婉婉, 董孟浩, 余发智, 等. 外周血炎症指标NLR、PLR、LMR预测乳腺癌新辅助化疗疗效的价值[J]. 中华全科医学, 2021, 19(9): 1442-1446. PAN Wanwan, DONG Menghao, YU Fazhi, et al. Value of peripheral inflammatory markers NLR, PLR and LMR in predicting the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Chinese Journal of General Practice, 2021, 19(9): 1442-1446.
[9] Yin Y, Zhang Y, Li L, et al. Prognostic value of pretreatment lymphocyte-to-monocyte ratio and development of a nomogram in breast cancer patients[J]. Front Oncol, 2021, 11: 650980.
[10] 梅章懿, 蒋蓓琦, 安敏, 等. 中性粒细胞淋巴细胞比及血小板淋巴细胞比预测乳腺癌非前哨淋巴结转移的价值分析[J]. 现代肿瘤医学, 2021, 29(6): 955-960. MEI Zhangyi, JIANG Beiqi, AN Min, et al. The value of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in predicting non-sentinel lymph node metastasis in breast cancer[J]. Journal of Modern Oncology, 2021, 29(6): 955-960.
[11] 林文华, 王文文, 杨少玲, 等. 基于术前超声及炎症指标的列线图预测早期乳腺癌腋窝高淋巴结负荷的价值[J]. 中华超声影像学杂志, 2023, 32(4): 339-347. LIN Wenhua, WANG Wenwen, YANG Shaoling, et al. Value of nomogram based on preoperative ultrasound and inflammatory indexes in predicting axillary high nodal burden in early breast cancer[J]. Chinese Journal of Ultrasonography, 2023, 32(4): 339-347.
[12] Yang L, Wang HB, Ma JP, et al. Association between the platelet to lymphocyte ratio, neutrophil to lymphocyte ratio and axillary lymph node metastasis in cT1N0 breast cancer patients[J]. Am J Transl Res, 2021, 13(3): 1854-1861.
[13] Wang H, Yang XW, Chen F, et al. Non-invasive assessment of axillary lymph node metastasis risk in early invasive breast cancer adopting automated breast volume scanning-based radiomics nomogram: a multicenter study[J]. Ultrasound Med Biol, 2023, 49(5): 1202-1211.
[14] 刘鹏, 王丽嘉, 马超. 影像组学及分析工具浅谈[J]. 生物医学工程与临床, 2022, 26(4): 511-518. LIU Peng, WANG Lijia, MA Chao. Introduction of radiomics and analytical tools[J]. Biomedical Engineering and Clinical Medicine, 2022, 26(4): 511-518.
[15] Yoo H, Cho KR, Song SE, et al. Tumor heterogeneity of breast cancer assessed with computed tomography texture analysis: association with disease-free survival and clinicopathological prognostic factor[J]. Diagnostics, 2023, 13(23): 3569. doi:10.3390/diagnostics13233569.
[16] 夏旭东, 段成洲, 王功夏, 等. MRI纹理分析预测乳腺癌腋窝淋巴结转移[J]. 中国医学影像技术, 2021, 37(4): 531-536. XIA Xudong, DUAN Chengzhou, WANG Gongxia, et al. Prediction of axillary lymph node metastasis of breast cancer with MRI texture analysis[J]. Chinese Journal of Medical Imaging Technology, 2021, 37(4): 531-536.
[17] Li N, Song C, Huang X, et al. Optimized radiomics nomogram based on automated breast ultrasound system: a potential tool for preoperative prediction of metastatic lymph node burden in breast cancer[J]. Breast Cancer, 2023, 15: 121-132. doi:10.2147/BCTT.S398300.
[18] 初竹秀, 赵文静, 李小燕, 等. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报(医学版), 2021, 59(9): 130-139. CHU Zhuxiu, ZHAO Wenjing, LI Xiaoyan, et al. Significance of neoadjuvant chemotherapy and molecular marker changes in 218 women with breast cancer[J]. Journal of Shandong University(Health Sciences), 2021, 59(9): 130-139.
[19] Jiang M, Li CL, Luo XM, et al. Radiomics model based on shear-wave elastography in the assessment of axillary lymph node status in early-stage breast cancer[J]. Eur Radiol, 2022, 32(4): 2313-2325.
[20] Wang HF, Yu JL, Shen WD, et al. The ratio of lymphocyte/red blood cells and platelets/lymphocytes are predictive biomarkers for lymph node metastasis in patients with breast cancer[J]. Cancer Biomark, 2023, 38(4): 595-602.
[21] Morkavuk ?瘙塁B, Kocaöz S, Korukluo glu B. Diagnostic value of Platelet/lymphocyte Ratio(PLR)for predicting sentinel axillary lymph node positivity in early-stage breast cancer compared with ultrasonography[J]. Int J Clin Pract, 2021, 75(12): e14939. doi:10.1111/ijcp.14939.
[22] 朱永琪, 纪华, 朱彦芳, 等. 术前MRI影像组学列线图对乳腺癌腋窝淋巴结转移的预测价值[J]. 磁共振成像, 2022, 13(5): 52-58. ZHU Yongqi, JI Hua, ZHU Yanfang, et al. Predictive value of preoperative MRI-based nomogram for axillary lymph node metastasis in breast cancer[J]. Chinese Journal of Magnetic Resonance Imaging, 2022, 13(5): 52-58.
[23] Wang XY, Zhao SY, Wang ZX, et al. Platelets involved tumor cell EMT during circulation: communications and interventions[J]. Cell Commun Signal, 2022, 20(1): 82. doi:10.1186/s12964-022-00887-3.
[24] Zhang WY, Wang SY, Wang YC, et al. Ultrasound-based radiomics nomogram for predicting axillary lymph node metastasis in early-stage breast cancer[J]. Radiol Med, 2024, 129(2): 211-221.
[25] Tang YL, Wang B, Ouyang T, et al. Ultrasound radiomics based on axillary lymph nodes images for predicting lymph node metastasis in breast cancer[J]. Front Oncol, 2023, 13: 1217309. doi:10.3389/fonc.2023.1217309.
[26] 焦光丽, 石子馨, 陈蓉, 等. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报(医学版), 2023, 61(12): 62-69. JIAO Guangli, SHI Zixin, CHEN Rong, et al. Radiomics of enhanced CT in predicting the response to platinum-based chemotherapy for ovarian cancer[J]. Journal of Shandong University(Health Sciences), 2023, 61(12): 62-69.
[27] 任艳, 王彦伟, 宋爱琳. 外周血炎症指数与乳腺癌腋窝淋巴结转移的相关性分析[J]. 兰州大学学报(医学版), 2024, 50(3): 44-48. REN Yan, WANG Yanwei, SONG Ailin. Association between peripheral blood inflammation index and axillary lymph node metastasis of breast cancer[J]. Journal of Lanzhou University(Medical Sciences), 2024, 50(3): 44-48.
[28] Song Y, Liu JJ, Jin CY, et al. Value of contrast-enhanced ultrasound combined with immune-inflammatory markers in predicting axillary lymph node metastasis of breast cancer[J]. Acad Radiol, 2024, 31(9): 3535-3545.
[1] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[2] 余之刚,郑超. 乳腺癌多学科诊疗的现状、挑战与创新模式[J]. 山东大学学报 (医学版), 2025, 63(1): 1-9.
[3] 山东省医学会乳腺疾病多学科联合委员会. 乳腺癌多学科协作诊疗山东共识(2024年版)[J]. 山东大学学报 (医学版), 2025, 63(1): 10-16.
[4] 程跃启,王斐,于理想,郑超,余之刚. 曲妥珠单抗致HER2阳性乳腺癌患者心脏毒性的研究进展[J]. 山东大学学报 (医学版), 2025, 63(1): 17-24.
[5] 王敏,李习平,檀军,邱梅,侯泽宇,田莹,罗鸿莹,范超文,齐玲,俞琦,谢薇. 慢病毒载体介导Gag-Caspase-8诱导三阴性乳腺癌原代细胞凋亡及S期阻滞[J]. 山东大学学报 (医学版), 2025, 63(1): 25-34.
[6] 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42.
[7] 宋雅雯,郭联涛,孔德光,孙圣荣. VTCN1导致HR+乳腺癌预后不良及内分泌治疗耐药[J]. 山东大学学报 (医学版), 2025, 63(1): 43-59.
[8] 刘晶晶,庞婧,赵晓丹,林昕,付敏,陈静静. 基于乳腺X线摄影及DCE-MRI机器学习模型预测乳腺癌新辅助治疗后病理完全缓解:双中心研究[J]. 山东大学学报 (医学版), 2025, 63(1): 60-72.
[9] 刘向荣,张新胜,杨荩冉,杨雪艳,刘钊,刘英华. ω-6/ω-3多不饱和脂肪酸比值对不同肿瘤发病风险的系统综述和Meta分析[J]. 山东大学学报 (医学版), 2024, 62(8): 34-48.
[10] 吴思雨,沈业隆,王锡明. 影像组学预测原发性中枢神经系统淋巴瘤的Ki-67标记指数[J]. 山东大学学报 (医学版), 2024, 62(11): 67-72.
[11] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[12] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[13] 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86.
[14] 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67.
[15] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
Viewed
Full text
20
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 20

  From Others local
  Times 1 19
  Rate 5% 95%

Abstract
144
Just accepted Online first Issue
0 0 144
  From Others local
  Times 142 2
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!