山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (11): 67-72.doi: 10.6040/j.issn.1671-7554.0.2024.0504
• 临床医学 • 上一篇
吴思雨1,2,沈业隆2,王锡明1,2
WU Siyu1,2, SHEN Yelong2, WANG Ximing1,2
摘要: 目的 研究原发性中枢神经系统淋巴瘤(primary central nervous system lymphomas, PCNSL)中表观扩散系数(apparent diffusion coefficient, ADC)、弥散加权成像(diffusion weighted imaging, DWI)和T1对比增强(T1 contrast enhanced, T1-CE)与Ki-67标记指数(labeling index, LI)的相关性,并评估基于多参数MRI影像组学模型区分低增殖PCNSL和高增殖PCNSL的性能。 方法 本项回顾性研究纳入83例PCNSL患者的MRI图像及临床信息,并利用Spearman相关性分析检验它们与Ki-67 LI的相关性。分别提取三个序列(ADC、DWI和T1-CE)的影像组学特征,并构建不同的影像组学模型。受试者工作特征(receiver operating characteristic, ROC)曲线用于评估模型性能,Delong检验用于比较模型差异。 结果 相对平均ADC(relative mean ADC, rADCmean)(ρ=-0.354,P=0.019)、相对平均DWI(relative mean DWI, rDWImean)(b=1 000)(ρ=0.273,P=0.013)和相对平均T1-CE(relative mean T1-CE, rT1-CEmean)(ρ=0.385,P=0.001)与Ki-67显著相关。最佳预测模型是组合模型(ADC+DWI+T1-CE)(AUC=0.869)。 结论 rDWImean、 rADCmean和rT1-CEmean与Ki-67 LI相关。基于多参数MRI影像组学模型有望区分低增殖PCNSL和高增殖PCNSL。
中图分类号:
[1] Farrall AL, Smith JR. Changing incidence and survival of primary central nervous system lymphoma in Australia: a 33-year national population-based study[J]. Cancers, 2021, 13(3): 403. doi:10.3390/cancers13030403. [2] Bi SC, Li J, Wang TY, et al. Multi-parametric MRI-based radiomics signature for preoperative prediction of Ki-67 proliferation status in sinonasal malignancies: a two-centre study[J]. Eur Radiol, 2022, 32(10): 6933-6942. [3] Küker W, Nägele T, Korfel A, et al. Primary central nervous system lymphomas(PCNSL): MRI features at presentation in 100 patients[J]. J Neurooncol, 2005, 72(2): 169-177. [4] Wieduwilt MJ, Valles F, Issa S, et al. Immunochemotherapy with intensive consolidation for primary CNS lymphoma: a pilot study and prognostic assessment by diffusion-weighted MRI[J]. Clin Cancer Res, 2012, 18(4): 1146-1155. [5] Chen T, Liu YB, Wang Y, et al. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China[J]. J Hematol Oncol, 2022, 15(1): 136. doi:10.1186/s13045-022-01356-7. [6] Lohmann P, Franceschi E, Vollmuth P, et al. Radiomics in neuro-oncological clinical trials[J]. Lancet Digit Health, 2022, 4(11): 841-849. [7] Dohan A, Gallix B, Guiu B, et al. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab[J]. Gut, 2020, 69(3): 531-539. [8] 董春桐, 毛宁, 谢海柱, 等. 影像组学及深度学习在预测乳腺癌新辅助化疗疗效中的研究进展[J]. 医学影像学杂志, 2023, 33(4): 652-656. DONG Chuntong, MAO Ning, XIE Haizhu, et al. Research progress of radiomics and deep learning in predicting the response to neoadjuvant chemotherapy for breast cancer[J]. Journal of Medical Imaging, 2023, 33(4): 652-656. [9] Cho U, Oh WJ, Hong YK, et al. Prognostic significance of high ki-67 index and histogenetic subclassification in primary central nervous system lymphoma[J]. Appl Immunohistochem Mol Morphol, 2018, 26(4): 254-262. [10] Schaff LR, Grommes C. Primary central nervous system lymphoma[J]. Blood, 2022, 140(9): 971-979. [11] Kaulen LD, Baehring JM. Treatment options for recurrent primary CNS lymphoma[J]. Curr Treat Options Oncol, 2022, 23(11): 1548-1565. [12] Neelakantan S, Kumaran SP, Viswamitra S, et al. Myriad of MR imaging phenotypes of primary central nervous system lymphoma in a cohort of immunocompetent Indian patient population[J]. Indian J Radiol Imaging, 2018, 28(3): 296-304. [13] Holdhoff M, Mrugala MM, Grommes C, et al. Challenges in the treatment of newly diagnosed and recurrent primary central nervous system lymphoma[J]. J Natl Compr Canc Netw, 2020, 18(11): 1571-1578. [14] Yang H, Xun Y, Yang AP, et al. Advances and challenges in the treatment of primary central nervous system lymphoma[J]. J Cell Physiol, 2020, 235(12): 9143-9165. [15] Luchini C, Pantanowitz L, Adsay V, et al. Ki-67 assessment of pancreatic neuroendocrine neoplasms: systematic review and meta-analysis of manual vs. digital pathology scoring[J]. Mod Pathol, 2022, 35(6): 712-720. [16] Raverot G, Ilie MD, Lasolle H, et al. Aggressive pituitary tumours and pituitary carcinomas[J]. Nat Rev Endocrinol, 2021, 17(11): 671-684. [17] Lenschow C, Schrägle S, Kircher S, et al. Clinical presentation, treatment, and outcome of parathyroid carcinoma: results of the NEKAR retrospective international multicenter study[J]. Ann Surg, 2022, 275(2): e479-e487. [18] 边毓尧, 石向明. 常规 MR联合 DWI成像鉴别小脑原发性中枢神经系统淋巴瘤与高级别胶质瘤的价值[J]. 中国实验诊断学, 2024, 28(2): 127-131. BIAN Yuyao, SHI Xiangming. The value of conventional MR combined with DWI imaging in differential diagnosis ofp rimary cerebellar central nervous system lymphoma and advanced glioma [J]. Chinese Journal of Laboratory Diagnosis, 2024, 28(2): 127-131. [19] Chen H, Li W, Wan C, et al. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers[J]. Front Oncol, 2022, 12: 942943. doi:10.3389/fonc.2022.942943. [20] Hu XX, Yang ZX, Liang HY, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki-67 labeling index[J]. J Magn Reson Imaging, 2017, 46(2): 383-392. [21] Schob S, Meyer J, Gawlitza M, et al. Diffusion-weighted MRI reflects proliferative activity in primary CNS lymphoma[J]. PLoS One, 2016, 11(8): e0161386. doi:10.1371/journal.pone.0161386. [22] Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2017, 23(15): 4259-4269. [23] Chen MY, Cao JS, Hu JH, et al. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 38-51. [24] Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. [25] Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study[J]. Lancet Oncol, 2018, 19(9): 1180-1191. [26] Xue KM, Liu L, Liu YX, et al. Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer[J]. Radiol Med, 2022, 127(7): 702-713. [27] Huang EP, OConnor JPB, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests[J]. Nat Rev Clin Oncol, 2023, 20(2): 69-82. [28] Xia W, Hu B, Li HQ, et al. Multiparametric-MRI-based radiomics model for differentiating primary central nervous system lymphoma from glioblastoma: development and cross-vendor validation[J]. J Magn Reson Imaging, 2021, 53(1): 242-250. [29] Bathla G, Priya S, Liu YN, et al. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques[J]. Eur Radiol, 2021, 31(11): 8703-8713. [30] Kang D, Park JE, Kim YH, et al. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation[J]. Neuro Oncol, 2018, 20(9): 1251-1261. |
[1] | 刘小文,曹永泉,侯明源,于德新. EOB-MRI多定量参数对肝胆期乏血供低信号结节进展风险的评估价值[J]. 山东大学学报 (医学版), 2024, 62(4): 31-39. |
[2] | 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86. |
[3] | 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67. |
[4] | 王磊,张帅,刘钢,由胜男,王植,朱珊,陈超,马信龙,杨强. MRI诊断140例腰椎智能网络自动检测分型MCs方法的比较[J]. 山东大学学报 (医学版), 2023, 61(3): 71-79. |
[5] | 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94. |
[6] | 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50. |
[7] | 靳新娟,蔡大幸,范金蕾,邓展昊,李楠,于德新,李安宁. 显微镜高分辨率MRI鉴别皮肤良、恶性局灶隆起性结节[J]. 山东大学学报 (医学版), 2023, 61(12): 51-61. |
[8] | 焦光丽,石子馨,陈蓉,宋亚博,杨飞,崔书君. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报 (医学版), 2023, 61(12): 62-69. |
[9] | 艾江山,高会江,艾仕文,李恒艳,石国栋,魏煜程. CT影像组学对囊腔型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(12): 70-77. |
[10] | 赵恩举,赵硕,郭云亮,王锡明. 282例颈动脉钙化与脑小血管病MRI总负荷评分的关联性[J]. 山东大学学报 (医学版), 2023, 61(1): 38-44. |
[11] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[12] | 孙浩瑜,姜鑫,陈守臻,曲思凤,史本康. 多参数磁共振联合前列腺健康指数对PSA灰区临床有意义前列腺癌的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(6): 46-50. |
[13] | 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75. |
[14] | 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50. |
[15] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
|