您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (1): 43-59.doi: 10.6040/j.issn.1671-7554.0.2024.1177

• 临床研究 • 上一篇    

VTCN1导致HR+乳腺癌预后不良及内分泌治疗耐药

宋雅雯,郭联涛,孔德光,孙圣荣   

  1. 武汉大学人民医院乳腺甲状腺外科, 湖北 武汉 430060
  • 发布日期:2025-02-20
  • 通讯作者: 孙圣荣. E-mail:sun137@sina.com孔德光. E-mail:2016103030008@whu.edu.cn
  • 基金资助:
    国家自然科学基金(82103671)

VTCN1 causes poor prognosis and endocrine therapy resistance in HR+ breast cancer

SONG Yawen, GUO Liantao, KONG Deguang, SUN Shengrong   

  1. Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
  • Published:2025-02-20

摘要: 目的 探讨激素受体阳性(特别是Luminal A型)乳腺癌内分泌治疗耐药的相关机制,以克服其临床治疗挑战并改善患者预后。 方法 本研究运用生物信息学技术,筛选出内分泌治疗敏感与耐药患者间差异表达的基因。通过泛癌分析、Kaplan-Meier生存分析、蛋白质互作网络构建、肿瘤免疫浸润细胞相关性分析以及体外细胞实验,推测验证目标基因发挥作用的可能机制。 结果 VTCN1能减弱他莫昔芬在MCF7和T47D细胞中的抗癌效果。该基因可能通过Notch4、Slug、Sox2、LAG3、PD-L1等调节因子改变肿瘤微环境,尤其是肿瘤免疫微环境,促进上皮间质转化(epithelial-mesenchymal transition, EMT),并影响激素受体表达,最终导致他莫昔芬耐药。 结论 VTCN1通过EMT相关因子调控肿瘤微环境,进而导致激素受体阳性乳腺癌对内分泌治疗耐药。

关键词: 乳腺癌, VTCN1, 内分泌治疗耐药, 他莫昔芬, 肿瘤微环境, 激素受体, 上皮间质转化

Abstract: Objective To investigate the mechanisms associated with endocrine therapy resistance in hormone receptor-positive(particularly Luminal A subtype)breast cancer, for overcoming clinical treatment challenges and improving patient outcomes. Methods Bioinformatics techniques were used to identify differential expression genes between endocrine therapy-sensitive and drug-resistant patients. Through pan-cancer analysis, Kaplan-Meier survival analysis, protein interaction network construction, correlation analysis with tumor-infiltrating immune cells, and in vitro cell experiments, the potential mechanisms underlying the role of the target gene were speculated and validated. Results VTCN1 attenuated the anticancer effect of Tamoxifen in MCF7 and T47D cells. This gene might alter the tumor microenvironment, particularly the tumor immune microenvironment, through regulatory factors such as Notch4, Slug, Sox2, LAG3, and PD-L1, promote epithelial-mesenchymal transition(EMT)and affect hormone receptor expression, ultimately lead to Tamoxifen resistance. Conclusion VTCN1 regulates the tumor microenvironment through EMT-related factors, thereby contributing to endocrine therapy resistance in hormone receptor-positive breast cancer.

Key words: Breast cancer, VTCN1, Endocrine therapy resistance, Tamoxifen, Tumor microenvironment, Hormone receptor, Epithelial-mesenchymal transition

中图分类号: 

  • R737.9
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(6): 524-541.
[3] Tong CWS, Wu M, Cho WCS, et al. Recent advances in the treatment of breast cancer[J]. Front Oncol, 2018, 8: 227. doi: 10.3389/fonc.2018.00227. eCollection 2018.
[4] Raheem F, Karikalan SA, Batalini F, et al. Metastatic ER+ breast cancer: mechanisms of resistance and future therapeutic approaches[J]. Int J Mol Sci, 2023, 24(22): 16198. doi: 10.3390/ijms242216198.
[5] Boafo GF, Shi Y, Xiao Q, et al. Targeted co-delivery of daunorubicin and cytarabine based on the hyaluronic acid prodrug modified liposomes [M]. Chinese Chemical Letters, 2022, 33(10): 4600-4604.
[6] Hammond ME, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16): 2784-2795.
[7] Clusan L, Ferrière F, Flouriot G, et al. A basic review on estrogen receptor signaling pathways in breast cancer[J]. Int J Mol Sci, 2023, 24(7): 6834. doi: 10.3390/ijms24076834..
[8] Waks AG, Winer EP. Breast cancer treatment[J]. JAMA, 2019, 321(3): 288-300.
[9] Pan H, Gray R, Braybrooke J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med, 2017, 377(19): 1836-1846.
[10] Bhat R, Thangavel H, Abdulkareem NM, et al. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer[J]. Sci Rep, 2022, 12(1): 1972. doi: 10.1038/s41598-022-05949-7.
[11] National Health Commission of The Peoples Republic of China. National guidelines for diagnosis and treatment of breast cancer 2022 in China(English version)[J]. Chin J Cancer Res, 2022, 34(3): 151-175.
[12] Rajendran S, Swaroop SS, Roy J, et al. p21 activated kinase-1 and tamoxifen—a deadly nexus impacting breast cancer outcomes[J]. Biochim Biophys Acta BBA Rev Cancer, 2022, 1877(1): 188668. doi:10.1016/j.bbcan.2021.188668.
[13] Turashvili G, Brogi E. Tumor heterogeneity in breast cancer[J]. Front Med, 2017, 4: 227. doi:10.3389/fmed.2017.00227.
[14] Demicheli R, Ardoino I, Boracchi P, et al. Recurrence and mortality according to estrogen receptor status for breast cancer patients undergoing conservative surgery. Ipsilateral breast tumour recurrence dynamics provides clues for tumour biology within the residual breast[J]. BMC Cancer, 2010, 10: 656. doi:10.1186/1471-2407-10-656.
[15] Clarke R, Tyson JJ, Michael Dixon J. Endocrine resistance in breast cancer: an overview and update[J]. Mol Cell Endocrinol, 2015, 418(3): 220-234.
[16] Cardoso F, Costa A, Norton L, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer(ABC2)[J]. Ann Oncol, 2014, 25(10): 1871-1888.
[17] Ojo D, Wei FX, Liu Y, et al. Factors promoting tamoxifen resistance in breast cancer via stimulating breast cancer stem cell expansion[J]. Curr Med Chem, 2015, 22(19): 2360-2374.
[18] Li Z, Wei HR, Li SY, et al. The role of progesterone receptors in breast cancer[J]. Drug Des Devel Ther, 2022, 16: 305-314. doi:10.2147/DDDT.S336643.
[19] Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2015, 373(3): 209-219.
[20] de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal[J]. Cancer Res, 2023, 83(23): 3861-3867.
[21] Hinohara K, Wu HJ, Vigneau S, et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance[J]. Cancer Cell, 2018, 34(6): 939-953.
[22] Hu CX, Li TY, Xu YQ, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Res, 2023, 51(D1): D870-D876.
[23] Uhlén M, Fagerberg L, Hallstr m BM, et al. Proteomics. tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi:10.1126/science.1260419.
[24] Li TW, Fu JX, Zeng ZX, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514.
[25] Tang ZF, Li CW, Kang BX, et al. GEPIA a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
[26] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
[27] Devulapally R, Sekar TV, Paulmurugan R. Formulation of anti-miR-21 and 4-hydroxytamoxifen co-loaded biodegradable polymer nanoparticles and their antiproliferative effect on breast cancer cells[J]. Mol Pharm, 2015, 12(6): 2080-2092.
[28] Tsang JYS, Tse GM. Molecular classification of breast cancer[J]. Adv Anat Pathol, 2020, 27(1): 27-35.
[29] Arimidex T, Forbes JF, Cuzick J, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial[J]. Lancet Oncol, 2008, 9(1): 45-53.
[30] Abdalla AN, Qattan A, Malki WH, et al. Significance of targeting VEGFR-2 and cyclin D1 in luminal-A breast cancer[J]. Molecules, 2020, 25(20): 4606. doi:10.3390/molecules25204606.
[31] Hwang KT, Kim EK, Jung SH, et al. Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database[J]. Breast Cancer Res Treat, 2018, 169(2): 311-322.
[32] Wang YY, Xu RJ, Zhang DY, et al. Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression[J]. Transl Lung Cancer Res, 2019, 8(6): 862-875.
[33] Song RJ, Ma SQ, Xu JJ, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR[J]. Mol Cancer, 2023, 22(1): 16. doi:10.1186/s12943-023-01719-9.
[34] Ding SN, Qiao N, Zhu QC, et al. Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer[J]. Cancer Commun, 2023, 43(6): 661-684.
[35] Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation[J]. Int J Cancer, 2006, 118(2): 290-301.
[36] Mallini P, Lennard T, Kirby J, et al. Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance[J]. Cancer Treat Rev, 2014, 40(3): 341-348.
[37] Yu JL, Yan YJ, Li SS, et al. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance[J]. Cell, 2024, 187(17): 4713-4732.
[38] Tsai SM, Wu SH, Hou MF, et al. The immune regulator VTCN1 gene polymorphisms and its impact on susceptibility to breast cancer[J]. J Clin Lab Anal, 2015, 29(5): 412-418.
[39] Li L, Huang GM, Banta AB, et al. Cloning, characterization, and the complete 56.8-kilobase DNA sequence of the human NOTCH4 gene[J]. Genomics, 1998, 51(1): 45-58.
[40] Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis[J]. J Mammary Gland Biol Neoplasia, 2001, 6(1): 23-36.
[41] Gallahan D, Jhappan C, Robinson G, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis[J]. Cancer Res, 1996, 56(8): 1775-1785.
[42] Lombardo Y, Faronato M, Filipovic A, et al. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells[J]. Breast Cancer Res, 2014, 16(3): R62. doi:10.1186/bcr3675.
[43] Bui QT, Im JH, Jeong SB, et al. Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer[J]. Cancer Lett, 2017, 390: 115-125. doi:10.1016/j.canlet.2017.01.014.
[44] Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression[J]. J Mammary Gland Biol Neoplasia, 2010, 15(2): 117-134.
[45] Li YQ, Wu YY, Abbatiello TC, et al. Slug contributes to cancer progression by direct regulation of ERα signaling pathway[J]. Int J Oncol, 2015, 46(4): 1461-1472.
[46] Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer[J]. BMC Cancer, 2012, 12: 91. doi:10.1186/1471-2407-12-91.
[47] Jin ML, Yang L, Jeong KW. SETD1A-SOX2 axis is involved in tamoxifen resistance in estrogen receptor α-positive breast cancer cells[J]. Theranostics, 2022, 12(13): 5761-5775.
[48] Gwak JM, Kim M, Kim HJ, et al. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance[J]. Oncotarget, 2017, 8(22): 36305-36318.
[49] Zamzam Y, Abdelmonem Zamzam Y, Aboalsoud M, et al. The utility of SOX2 and AGR2 biomarkers as early predictors of tamoxifen resistance in ER-positive breast cancer patients[J]. Int J Surg Oncol, 2021, 2021: 9947540. doi:10.1155/2021/9947540.
[50] Mohd Idris RA, Mussa A, Ahmad S, et al. The effects of tamoxifen on tolerogenic cells in cancer[J]. Biology, 2022, 11(8): 1225. doi:10.3390/biology11081225.
[51] Zhang RN, Yang YJ, Dong WJ, et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1[J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2114851119. doi:10.1073/pnas.2114851119.
[52] Andrews LP, Somasundaram A, Moskovitz JM, et al. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding[J]. Sci Immunol, 2020, 5(49): eabc2728. doi:10.1126/sciimmunol.abc2728.
[53] Oner G, Broeckx G, Van Berckelaer C, et al. The immune microenvironment characterisation and dynamics in hormone receptor-positive breast cancer before and after neoadjuvant endocrine therapy[J]. Cancer Med, 2023, 12(17): 17901-17913.
[54] Arneth B. Tumor microenvironment[J]. Medicina(Kaunas), 2019, 56(1): E15. doi:10.3390/medicina56010015.
[55] Medema JP. Cancer stem cells: the challenges ahead[J]. Nat Cell Biol, 2013, 15(4): 338-344.
[56] Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629.
[57] Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: a review from origin to therapeutic implications[J]. J Cell Physiol, 2020, 235(2): 790-803.
[58] Méry B, Rancoule C, Guy JB, et al. Cancer stem cells: radiotherapeutic features and therapeutic targets[J]. Bull Cancer, 2016, 103(1): 48-54.
[59] Abrahamsson A, Rodriguez GV, Dabrosin C. Fulvestrant-mediated attenuation of the innate immune response decreases ER+ breast cancer growth in vivo more effectively than tamoxifen[J]. Cancer Res, 2020, 80(20): 4487-4499.
[1] 余之刚,郑超. 乳腺癌多学科诊疗的现状、挑战与创新模式[J]. 山东大学学报 (医学版), 2025, 63(1): 1-9.
[2] 山东省医学会乳腺疾病多学科联合委员会. 乳腺癌多学科协作诊疗山东共识(2024年版)[J]. 山东大学学报 (医学版), 2025, 63(1): 10-16.
[3] 程跃启,王斐,于理想,郑超,余之刚. 曲妥珠单抗致HER2阳性乳腺癌患者心脏毒性的研究进展[J]. 山东大学学报 (医学版), 2025, 63(1): 17-24.
[4] 王敏,李习平,檀军,邱梅,侯泽宇,田莹,罗鸿莹,范超文,齐玲,俞琦,谢薇. 慢病毒载体介导Gag-Caspase-8诱导三阴性乳腺癌原代细胞凋亡及S期阻滞[J]. 山东大学学报 (医学版), 2025, 63(1): 25-34.
[5] 张洁,张芳芳,王靖楠,李泽宇,宋颖,李娜. circ_0000144在乳腺癌中的表达及其对乳腺癌细胞增殖、迁移和侵袭能力的影响[J]. 山东大学学报 (医学版), 2025, 63(1): 35-42.
[6] 刘向荣,张新胜,杨荩冉,杨雪艳,刘钊,刘英华. ω-6/ω-3多不饱和脂肪酸比值对不同肿瘤发病风险的系统综述和Meta分析[J]. 山东大学学报 (医学版), 2024, 62(8): 34-48.
[7] 刘文竹,刘付臣. 1例脊髓延髓肌萎缩症运动神经元分化及分子病理分析[J]. 山东大学学报 (医学版), 2024, 62(4): 92-100.
[8] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[9] 金珊,高杰,谢玉姣,展垚,杜甜甜,王传新. 甲基转移酶PRMT5稳定USP15促进乳腺癌发生发展的作用[J]. 山东大学学报 (医学版), 2023, 61(7): 1-11.
[10] 曹广磊,李季,闫飞,林鹏,侯为开,侯新国,陈丽. 甲状腺激素抵抗综合征伴高泌乳素血症1例[J]. 山东大学学报 (医学版), 2023, 61(6): 113-116.
[11] 董相君,李娟,孔雪,李培龙,赵文静,梁怡然,王丽丽,杜鲁涛,王传新. 环状RNA hsa_circ_0008591对乳腺癌细胞生物学行为的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 78-87.
[12] 吴文静,孙媛,王光裕,吕晓晴,焉传祝,林鹏飞. 1例女性杜氏肌营养不良的分子遗传学机制[J]. 山东大学学报 (医学版), 2023, 61(10): 95-100.
[13] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[14] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[15] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!