您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (4): 92-100.doi: 10.6040/j.issn.1671-7554.0.2024.0118

• 临床医学 • 上一篇    

1例脊髓延髓肌萎缩症运动神经元分化及分子病理分析

刘文竹,刘付臣   

  1. 山东大学齐鲁医院神经内科, 山东 济南 250012
  • 发布日期:2024-05-16
  • 通讯作者: 刘付臣 . E-mail:fuchen.liu@email.sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2023MH180)

Differentiation and molecular pathological analysis of motor neurons in a case of spinal muscular atrophy

LIU Wenzhu, LIU Fuchen   

  1. Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-05-16

摘要: 目的 运用脊髓延髓肌萎缩症(spinal and bulbar muscular atrophy, SBMA)患者诱导多潜能干细胞(induced pluripotent stem cells, iPSCs)来源的运动神经元探究本病的分子病理表型。 方法 提取1例SBMA患者及1例健康对照者的皮肤成纤维细胞并重编程为iPSCs;将iPSCs诱导为运动神经前体细胞(motor neurons progenitor, MNP)并分化为成熟的运动神经元(mature motor neurons, mMN);免疫荧光染色研究细胞的增殖与凋亡,检测细胞核内包涵体的形成。 结果 患者,35岁,男性,主要表现为四肢近端无力、手抖以及性功能减退。骨骼肌活检显示神经源性损害病理改变。外周血毛细管电泳检测显示雄激素受体(androgen receptor, AR)基因第1外显子CAG重复次数为44次。iPSCs均表达干性标记物,细胞核型正常,并能随机分化为三胚层细胞类型。患者iPSCs及MNP未见细胞核内包涵体,但mMN中的核内包涵体较为典型。与健康对照相比,患者MNP增殖比例下降,凋亡比例增加。 结论 SBMA患者iPSCs携带致病变异,其分化的mMN含有典型的细胞核内包涵体,精准地模拟本病的分子病理特征,为后续机制研究和药物靶标发现提供理想的模型。

关键词: 脊髓延髓肌萎缩症, 肯尼迪病, 雄激素受体基因, 诱导多潜能干细胞, 运动神经元

Abstract: Objective To explore the molecular pathologic phenotype of spinal and bulbar muscular atrophy(SBMA)using motor neurons derived from induced pluripotent stem cells(iPSCs)from SBMA patients. Methods Skin fibroblasts from one SBMA patient and one healthy control were extracted and reprogrammed into iPSCs; iPSCs were induced into motor neurons progenitor(MNP)and differentiated into mature motor neurons(mMN); immunofluorescence staining was used to study cell proliferation and apoptosis, and the formation of intranuclear inclusion bodies was detected. Results The patient was a 35-year-old male who presented with proximal weakness of the extremities, hand tremors, and hypogonadism. Skeletal muscle biopsy showed pathologic changes of neurogenic damage. Peripheral blood capillary electrophoresis showed 44 repeats of CAG in exon 1 of the AR gene. iPSCs all expressed stemness markers, had normal karyotypes, and were able to differentiate randomly into trichodermal cell types. No intranuclear inclusion bodies were seen in patient iPSCs and MNP, but intranuclear inclusion bodies were more typical in mMN. Compared with normal controls, the patients MNP had an increased proportion of apoptosis and a decreased proportion of proliferation. Conclusion The iPSCs of SBMA patients carried pathogenic mutations, and their differentiated mMNs contained typical intranuclear inclusion bodies, which accurately mimicked the molecular pathological features of the disease and provided an ideal model for the subsequent mechanism study and drug target discovery.

Key words: Spinal and Bulbar Muscular Atrophy, Kennedys Disease, Androgen Receptor Gene, Induced Pluripotent Stem Cells, Motor Neurons

中图分类号: 

  • R746.4
[1] Cortes CJ, La Spada AR. X-linked spinal and bulbar muscular atrophy: from clinical genetic features and molecular pathology to mechanisms underlying disease toxicity[J]. Adv Exp Med Biol, 2018, 1049: 103-133. doi: 10.1007/978-3-319-71779-1_5.
[2] Borgia D, Malena A, Spinazzi M, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients[J]. Hum Mol Genet, 2017, 26(6): 1087-1103.
[3] Feng X, Luo S, Lu B. Conformation polymorphism of polyglutamine proteins[J]. Trends Biochem Sci, 2018, 43(6): 424-435.
[4] Minakawa EN, Nagai Y. Protein aggregation inhibitors as disease-modifying therapies for polyglutamine diseases[J]. Front Neurosci, 2021, 15: 621996. doi: 10.3389/fnins.2021.621996.
[5] Giorgetti E, Lieberman AP. Polyglutamine androgen receptor-mediated neuromuscular disease[J]. Cell Mol Life Sci, 2016, 73(21): 3991-3999.
[6] Querin G, Bertolin C, Da RE, et al. Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients[J]. J Neurol Neurosurg Psychiatry, 2016, 87(8): 810-816.
[7] Fratta P, Nirmalananthan N, Masset L, et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy[J]. Neurology, 2014, 82(23): 2077-2084.
[8] Hashizume A, Banno H, Katsuno M, et al. Quantitative assessment of swallowing dysfunction in patients with spinal and bulbar muscular atrophy[J]. Intern Med, 2017, 56(23): 3159-3165.
[9] Suzuki K, Katsuno M, Banno H, et al. The profile of motor unit number estimation(MUNE)in spinal and bulbar muscular atrophy[J]. J Neurol Neurosurg Psychiatry, 2010, 81(5): 567-571.
[10] Harding AE, Thomas PK, Baraitser M, et al. X-linked recessive bulbospinal neuronopathy: a report of ten cases[J]. J Neurol Neurosurg Psychiatry, 1982, 45(11): 1012-1019.
[11] Sobue G, Hashizume Y, Mukai E, et al. X-linked recessive bulbospinal neuronopathy. A clinicopathological study[J]. Brain, 1989,112( Pt 1): 209-232.
[12] Minakawa EN, Popiel HA, Tada M, et al. Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation[J]. Brain, 2020,143(6): 1811-1825.
[13] Du ZW, Chen H, Liu H, et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells[J]. Nat Commun, 2015, 6: 6626. doi: 10.1038/ncomms7626.
[14] Giandomenico SL, Sutcliffe M,Lancaster MA.Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development[J]. Nat Protoc, 2021, 16(2): 579-602.
[15] Wang D, Zhang R, Wang Y, et al. Establishment of an induced pluripotent stem cell(iPSC)line(INNDSUi001-A)from a healthy female Chinese Han[J]. Stem Cell Res, 2022, 62: 102819. doi: 10.1016/j.scr.2022.102819.
[16] Jamal A. Induced pluripotent stem cells(iPSCs): where are we and where are we heading?[J]. Cell Mol Biol(Noisy-le-grand), 2023, 69(11): 76-80.
[17] Sato M, Takizawa H, Nakamura A, et al. Application of urine-derived stem cells to cellular modeling in neuromuscular and neurodegenerative diseases[J]. Front Mol Neurosci, 2019, 12: 297. doi: 10.3389/fnmol.2019.00297.
[18] Petazzi P, Menendez P, Sevilla A. CRISPR/Cas9-mediated gene knockout and knockin human iPSCs[J]. Methods Mol Biol, 2022, 2454: 559-574. doi:10.1007/7651_2020_337.
[19] Fernandez-Guasti A, Kruijver FP, Fodor M, et al. Sex differences in the distribution of androgen receptors in the human hypothalamus[J]. J Comp Neurol, 2000, 425(3): 422-435.
[20] Li M, Sobue G, Doyu M, et al. Primary sensory neurons in X-linked recessive bulbospinal neuropathy: histopathology and androgen receptor gene expression[J]. Muscle Nerve, 1995,18(3): 301-308.
[21] Ward PJ, Davey RA, Zajac JD, et al. Neuronal androgen receptor is required for activity dependent enhancement of peripheral nerve regeneration[J]. Dev Neurobiol, 2021, 81(4): 411-423.
[22] Kumar R. Role of androgen receptor polyQ chain elongation in Kennedy's disease and use of natural osmolytes as potential therapeutic targets[J]. IUBMB Life, 2012, 64(11): 879-884.
[23] Mazzini L, Gelati M, Profico DC, et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial[J]. J Transl Med, 2015,13: 17. doi: 10.1186/s12967-014-0371-2.
[24] Tadesse T, Gearing M, Senitzer D, et al. Analysis of graft survival in a trial of stem cell transplant in ALS[J]. Ann Clin Transl Neurol, 2014, 1(11): 900-908.
[25] Glass JD, Hertzberg VS, Boulis NM, et al. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials[J]. Neurology, 2016, 87(4): 392-400.
[1] 吴文静,孙媛,王光裕,吕晓晴,焉传祝,林鹏飞. 1例女性杜氏肌营养不良的分子遗传学机制[J]. 山东大学学报 (医学版), 2023, 61(10): 95-100.
[2] 张文华,吴承远,李新钢,徐淑军,李刚,江玉泉,周茂德,刘猛. 人胶质细胞源性神经营养因子在肌萎缩性脊髓侧索硬化症小鼠模型基因治疗中的作用[J]. 山东大学学报(医学版), 2011, 49(11): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!