山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (1): 25-34.doi: 10.6040/j.issn.1671-7554.0.2024.1107
王敏1,李习平2,檀军3,邱梅4,侯泽宇5,田莹3,罗鸿莹4,范超文1,齐玲6,俞琦1,谢薇4
WANG Min1, LI Xiping2, TAN Jun3, QIU Mei4, HOU Zeyu5, TIAN Ying3, LUO Hongying4, FAN Chaowen1, QI Ling6, YU Qi1, XIE Wei4
摘要: 目的 探讨携Gag-Caspase-8慢病毒样颗粒对三阴性乳腺癌原代细胞增殖、迁移、周期和凋亡的影响及作用机制。 方法 收集临床人乳腺癌标本3例,通过改良组织块培养法培养人乳腺癌原代细胞,通过HE染色、免疫组化及免疫荧光鉴定所培养的细胞是否为高纯度三阴性人乳腺癌原代细胞;慢病毒转染构建携Gag-Caspase-8慢病毒样颗粒,细胞分为PBS组、Gag-VLPs组和Gag-CASP8-VLPs组。采用MTT法评估细胞增殖,划痕实验检测细胞迁移能力,AO/EB染色检测细胞凋亡,流式细胞术分析细胞周期和凋亡,蛋白质免疫印迹考察凋亡相关蛋白表达。 结果 临床肿瘤标本经HE染色确定为乳腺癌病理组织,免疫组化鉴定乳腺癌原代细胞特异性分子标记物CA153阳性高表达,并通过计算阳性细胞比例评估细胞纯度约为98%,免疫荧光检测结果显示,HER2、ER、PR均阴性表达,证明所培养的细胞为高纯度三阴性人乳腺癌原代细胞;Western blotting检测发现构建的Gag-VLPs和Gag-CASP8-VLPs内有慢病毒载体特异性分子标志物P24表达,证明慢病毒样颗粒包装成功。Gag-CASP8-VLPs干预三阴性人乳腺癌原代细胞24、48 h后,与对照组PBS和Gag-VLPs相比,倒置显微镜下观察到细胞皱缩、体积减小、贴壁能力下降且漂浮细胞增多;MTT检测显示,Gag-CASP8-VLPs组显著抑制了人乳腺癌原代细胞的生长(P<0.01),并呈时间依赖性;细胞划痕实验观察到,Gag-CASP8-VLPs组可显著抑制人乳腺癌原代细胞的迁移能力(P<0.05);流式细胞术检测发现,Gag-CASP8-VLPs组S期细胞数量显著增高(P<0.01),细胞阻滞于S期;AO/EB染色及流式细胞术检测发现,Gag-CASP8-VLPs组可诱导细胞发生凋亡(P<0.01);Western blotting结果显示,Gag-CASP8-VLPs组三阴性乳腺癌原代细胞内Gag-Caspase-8、Pro caspase-8、Active caspase-8和Caspase-3凋亡相关蛋白表达显著增高(P<0. 01)。 结论 慢病毒介导Gag-Caspase-8将活化的Caspase-8导入三阴性乳腺癌原代细胞,通过激活下游Caspase-3,诱导细胞凋亡,并使细胞停滞在S期,从而抑制细胞增殖和迁移。
中图分类号:
[1] Xiong N, Wu H, Yu Z. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies[J]. Front Oncol, 2024, 14: 1405491. doi:10.3389/fonc.2024.1405491. [2] Tran J, Thaper A, Lopetegui-Lia N, et al. Locoregional recurrence in triple negative breast cancer: past, present, and future[J]. Expert Rev Anticancer Ther, 2023, 23(10): 1085-1093. [3] Hossain F, Majumder S, David J, et al. Precision medicine and triple-negative breast cancer: current landscape and future directions[J]. Cancers(Basel), 2021, 13(15): 3739. doi:10.3390/cancers13153739. [4] 王喆,刘玉洁,毛倩,等. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J].山东大学学报(医学版), 2021, 59(8): 113-118. WANG Zhe, LIU Yujie, MAO Qian, et al. Evaluation of the efficacy of different regimens for early triple negative breast cancer based on the inverse probability of treatment weighting method[J]. Journal of Shandong University(Health Sciences), 2021, 59(8): 113-118. [5] Tian S, Wang Z, Wu Z, et al. Valtrate from Valeriana jatamansi Jones induces apoptosis and inhibits migration of human breast cancer cells in vitro[J]. Nat Prod Res, 2020, 34(18): 2660-2663. [6] Jia Y, Tian Y, An S, et al. Effects of microRNA-195 on the prognosis of glioma patients and the proliferation and apoptosis of human glioma cells[J]. Pathol Oncol Res, 2020, 26(2): 753-763. [7] Derakhshani A, Silvestris N, Hajiasgharzadeh K, et al. Expression and characterization of a novel recombinant cytotoxin II from Naja naja oxiana venom: a potential treatment for breast cancer[J]. Int J Biol Macromol, 2020, 162: 1283-1292. doi:10.1016/j.ijbiomac.2020.06.130. [8] Mandal R, Barrón JC, Kostova I, et al. Caspase-8: the double-edged sword[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188357. doi:10.1016/j.bbcan.2020.188357. [9] Tsuchiya K. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications[J]. Microbiol Immunol, 2020, 64(4): 252-269. [10] Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8[J]. Curr Opin Cell Biol, 2020, 63: 186-193. doi:10.1016/j.ceb.2020.02.004. [11] Martins SA, Santos J, Silva R, et al. How promising are HIV-1-based virus-like particles for medical applications[J]. Front Cell Infect Microbiol, 2022,12: 997875. doi:10.3389/fcimb.2022.997875. [12] Essus VA, Souza JG, Nunes G, et al. Bacteriophage P22 capsid as a pluripotent nanotechnology tool[J]. Viruses, 2023, 15(2). doi:10.3390/v15020516. [13] Tumban E. Bacteriophage virus-like particles: platforms for vaccine design[J]. Methods Mol Biol, 2024, 2738: 411-423. doi:10.1007/978-1-0716-3549-0_24. [14] Ao Z, Huang J, Tan X, et al. Characterization of the single cycle replication of HIV-1 expressing Gaussia luciferase in human PBMCs, macrophages, and in CD4(+)T cell-grafted nude mouse[J]. J Virol Methods, 2016, 228: 95-102. doi:10.1016/j.jviromet.2015.11.019. [15] Ao Z, Chen W, Tan J, et al. Lentivirus-based virus-like particles mediate delivery of Caspase 8 into breast cancer cells and inhibit tumor growth[J]. Cancer Biother Radiopharm, 2019, 34(1): 33-41. [16] 王敏,陆祥,曾峰,等.人乳腺癌原代细胞组织块培养方法的改良及其鉴定[J]. 遵义医学院学报, 2019, 42(4): 448-454. WANG Min, LU Xiang, ZENG Feng, et al. Improvement and characterization of the primary cell culture of human breast cancer tissue block[J]. Journal of Zunyi Medical University, 2019, 42(4): 448-454. [17] Kobinger GP, Weiner DJ, Yu QC, et al. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo[J]. Nat Biotechnol, 2001, 19(3): 225-230. [18] Hao J, Ding XL, Yang X, et al. Prunella vulgaris polysaccharide inhibits growth and migration of breast carcinoma-associated fibroblasts by suppressing expression of basic fibroblast growth factor[J]. Chin J Integr Med, 2020, 26(4): 270-276. [19] Yu S, Ji H, Dong X, et al. FAS/FAS-L-mediated apoptosis and autophagy of SPC-A-1 cells induced by water-soluble polysaccharide from Polygala tenuifolia[J]. Int J Biol Macromol, 2020, 150: 449-458. doi:10.1016/j.ijbiomac.2020.02.010. [20] Tummers B, Mari L, Guy CS, et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis[J]. Immunity, 2020, 52(6): 994-1006. [21] Zhao T, Li W, Chen J, et al. Genomic variants in Fas-mediated apoptosis pathway predict a poor response to platinum-based chemotherapy for Chinese gastric cancer patients[J]. J Cancer, 2021, 12(3): 849-859. [22] Sun H, Yang Y, Gu M, et al. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro[J]. Toxicol Lett, 2022, 356: 143-150. [23] 封海岗,刘国文,曹洪.干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J].山东大学学报(医学版), 2022, 60(10): 9-16. FENG Haigang, LIU Guowen, CAO Hong, et al. Effects and mechanism of interfering MAD2L1 gene expression on the apoptosis of breast cancer cells[J]. Journal of Shandong University(Health Sciences), 2022, 60(10): 9-16. [24] 王敏,李习平,杨梅,等. Caspase信号途径及其在乳腺癌治疗中的作用研究进展[J].陕西医学杂志, 2021, 50(3): 377-380. WANG Min, LI Xiping, YANG Mei, et al. Research progress on Caspase signaling pathway and its role in treatment of breast cancer[J]. Shaanxi Medical Journal, 2021, 50(3): 377-380. |
[1] | 刘宁,吕欣,李栋,黄志伟,刘毅,张乐玲. 人血管生成素1基因慢病毒表达载体的构建及其在脐带间充质干细胞的表达[J]. 山东大学学报(医学版), 2016, 54(12): 1-7. |
[2] | 李雪梅1, 颜世平1, 宿敬然2,程兆令1, 朱强1. TIPE2在结肠癌发展中的作用及分子机制[J]. 山东大学学报(医学版), 2014, 52(1): 20-22. |
[3] | 朱守荣1,张芮2,曹永倩1,冯璋1,王一兵1. 慢病毒载体靶向携带survivin-siRNA对恶性黑色素瘤A375细胞的影响[J]. 山东大学学报(医学版), 2013, 51(5): 54-57. |
[4] | 褚倩倩1,许刚2,任桂杰1,徐霞1,胡中一1,刘永青1,苑辉卿1,田克立1. 过氧化物酶体增殖物激活受体γ激动剂对增强人结肠癌化疗敏感性的作用[J]. 山东大学学报(医学版), 2012, 50(1): 66-71. |
[5] | . 靶向rPTTG的shRNA慢病毒载体构建及沉默效率评价[J]. 山东大学学报(医学版), 2009, 47(9): 76-80. |
[6] | 崔丽萍,崔晶,时昌文,孙青 . 负载hTERT基因片段的慢病毒的包装及表达[J]. 山东大学学报(医学版), 2008, 46(2): 132-135. |
[7] | 林阿丽,孙青 . 编码hGM-CSF基因的慢病毒包装及表达[J]. 山东大学学报(医学版), 2007, 45(6): 554-557. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|