您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (3): 44-54.doi: 10.6040/j.issn.1671-7554.0.2024.1110

• 基础医学 • 上一篇    

镉与微塑料单独及联合暴露对小鼠认知功能的影响

张洪嘉1,姚文环2,寇蕊蕊3,程东2,张天亮2,赵秀兰1   

  1. 1.山东大学公共卫生学院卫生毒理学系, 山东 济南250012;2.山东省疾病预防控制中心, 山东 济南 250013;3.山东大学公共卫生学院实验教学中心, 山东 济南 250012
  • 发布日期:2025-04-08
  • 通讯作者: 赵秀兰. E-mail:zhao.xl@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82073587)

Effect of alone and combined exposure to cadmium and microplastics on cognitive function in mice

ZHANG Hongjia1, YAO Wenhuan2, KOU Ruirui3, CHENG Dong2, ZHANG Tianliang2, ZHAO Xiulan1   

  1. 1. Department of Health Toxicology, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Center for Disease Control and Prevention, Jinan 250013, Shandong, China;
    3. Experimental Teaching Center, School of Public Health, Shandong University, Jinan 250012, Shandong, China
  • Published:2025-04-08

摘要: 目的 探讨镉(cadmium, Cd)、微塑料(microplastics, MPs)单独或联合暴露对认知功能损伤的发生机制。 方法 按照体质量随机数字法将雌性小鼠分为空白对照组、Cd组(Cd:5 mg/kg·bw CdCl2 )、MPs组(MPs:10 mg/kg·bw)、Cd+MPs联合组(Cd+MPs:5 mg/kg·bw CdCl2+10 mg/kg·bw MPs),每组14只。每天分别经灌胃给予小鼠CdCl2和MPs。12周末,采用神经行为学方法评价小鼠认知功能。实验结束后,每组随机取4只小鼠经体内灌注固定后,取大脑进行大脑神经元核抗原(neuronal nuclei antigen, NeuN)免疫组化检测;每组随机另取5只小鼠经尾静脉注射伊文思蓝检测血脑屏障(blood brain barrier, BBB)通透性;每组其余动物处死后取大脑组织采用Western blotting进行相关蛋白分子表达检测;采用石墨炉原子吸收分光光度计分析小鼠大脑Cd含量。 结果 旷场试验结果显示,Cd组、MPs组和Cd+MPs联合组小鼠在周围区域停留时间均高于对照组(P<0.05),在中央区活动时间均低于对照组(P<0.05)。新物体识别实验结果显示,与对照组相比,Cd组、MPs组、Cd+MPs联合组小鼠识别指数均表现为明显降低(P<0.05)。伊文思蓝检测结果显示,与对照组相比,Cd组、MPs组以及Cd+MPs联合组小鼠大脑匀浆OD值明显升高(P<0.05),提示BBB通透性增加。大脑组织Cd含量分析结果显示,与对照组相比,Cd组、Cd+MPs联合组小鼠大脑Cd含量明显增加(P<0.05),而且Cd+MPs联合组小鼠大脑Cd含量明显高于Cd组(P<0.05)。NeuN免疫组化染色后神经元计数结果显示,与对照组相比,Cd组、MPs组和Cd+MPs联合组大脑皮层神经元数目降低,差异均具有统计学意义(P<0.05)。Western blotting结果显示,Cd组、MPs组和Cd+MPs联合组小鼠大脑皮层突触素1、突触素、突触后密度蛋白95蛋白表达均降低(P<0.05),其中Cd+MPs联合组降低幅度最大。与对照组相比,Cd组、MPs组和Cd+MPs联合组大脑皮层炎性关键调控蛋白NF-κB激活,表现为p-NF-κB/总NF-κB比值明显升高(P<0.05)。同时,焦亡轴下游消皮素D与NeuN免疫荧光双染显示,Cd组、MPs组以及Cd+MPs联合组小鼠大脑均观察到消皮素D与神经元共定位,以Cd+MPs联合组焦亡神经元最多。 结论 Cd和MPs单独暴露均导致小鼠认知功能损伤,两者联合暴露大脑损伤加重,NF-κB激活,神经元炎性焦亡可能是Cd和MPs共同的作用机制之一。

关键词: 镉, 微塑料, 认知功能, 神经元, 细胞焦亡

Abstract: Objective To investigate the mechanism of cognitive impairment caused by cadmium(Cd)and microplastics(MPs)exposure alone or in combination. Methods Female mice were divided into control group, Cd group(Cd: 5 mg/kg·bw CdCl2), MPs group(MPs: 10 mg/kg·bw), Cd+MPs combination group(Cd+MPs: 5 mg/kg·bw CdCl2+10 mg/kg·bw MPs)by random number method according to body weight, with 14 mice in each group. The mice were given CdCl2 and MPs once daily by gavage. At the end of 12 weeks, the neurobehavioral performances of the mice were evaluated. Subsequently, 4 mice from each group were randomly selected and transcardially perfused with 4% paraformaldehyde(PFA), and the brains were dissected for immunohistochemical staining with NeuN. Another 5 mice from each group were treated with Evans blue by tail vein injection to determine the blood-brain barrier(BBB)permeability. The remaining mice of each group were sacrificed and the brains were subjected to Western blotting for detection of protein expression of interest. The Cd content in the brain of the mice was analysed by graphite furnace atomic absorption spectrophotometer. Results The results of the open field test showed that the dwell times in the peripheral area of mice from the Cd group, MPs group and Cd+MPs combination group were higher than those of the control group(P<0.05), and the activity times in the central region were lower than those of the control group(P<0.05). The results of the novel object recognition experiment showed that the recognition index of all mice in the Cd group, MPs group and Cd+MPs combination group was significantly decreased compared with the control mice(P<0.05). Evans blue detection showed that the OD values of brain homogenate of mice from the Cd group, MPs group and Cd+MPs combination group significantly increased(P<0.05)compared with the control values, indicating the obvious increase of BBB permeability. The results of Cd analysis showed that the Cd content of mouse brain in Cd group and Cd+MPs combination group was significantly increased(P<0.05), and the Cd level of mouse brain in Cd+MPs combination group was significantly higher than that of Cd group(P<0.05). The neuron count results after NeuN immunohistochemical staining showed that compared with the control group, the decrease of neurons in the brain cortex of mice from Cd group, MPs group and Cd+MPs combination group was statistically significant(P<0.05). Western blotting results showed that the protein expressions of synapsin1(Syn-1), synaptonphysin(SYP)and postsynaptic density protein 95(PSD95)in the brain cortex of mice from the Cd group, MPs group and Cd+MPs combination group were decreased(P<0.05), with the greatest decrease in the Cd+MPs combination group. Compared with the control group, the key inflammatory regulatory protein, NF-κB, was activated in the brain tissue of Cd, MPs and Cd+MPs combination groups, as evidenced by the p-NF-κB/ total NF-κB ratio, which was significantly increased(P<0.05). Immunofluorescence double staining of the downstream protein of the pyrotosis axis, Gasdermin D(GSDMD), with NeuN showed that co-localization of GSDMD and NeuN-positive neurons was observed in the Cd group, the MPs group and the Cd+MPs combination group, and the most of the neurons with pyrotosis were observed in the Cd+MPs combination group. Conclusion Both Cd and MPs individual exposure could lead to cognitive impairment in mice, and their combined exposure aggravated the brain damage. The activation of NF-κB, inflammatory pyrotosis of neurons in the brain, may be one of the shared mechanisms of Cd and MPs.

Key words: Cadmium, Microsplastics, Cognitive function, Neuron, Pyrotosis

中图分类号: 

  • R114
[1] 邹长伟, 江玉洁, 黄虹. 重金属镉的分布、暴露与健康风险评价研究进展[J]. 生态毒理学报, 2022, 17(6): 225-243. ZOU Changwei, JIANG Yujie, HUANG Hong. Distribution, exposure and health risk assessment of heavy metal cad-mium: a review[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 225-243.
[2] Goyal T, Mitra P, Singh P, et al. Evaluation of oxidative stress and pro-inflammatory cytokines in occupationally cadmium exposed workers[J]. Work, 2021, 69(1): 67-73.
[3] Choudhury TR, Riad S, Uddin FJ, et al. Microplastics in multi-environmental compartments: research advances, media, and global management scenarios[J]. J Contam Hydrol, 2024, 265: 104379. doi:10.1016/j.jconhyd.2024.104379
[4] Zhao BS, Rehati P, Yang Z, et al. The potential toxicity of microplastics on human health[J]. Sci Total Environ, 2024, 912: 168946. doi:10.1016/j.scitotenv.2023.168946
[5] Yang ZY, Wang MX, Feng ZH, et al. Human microplastics exposure and potential health risks to target organs by different routes: a review[J]. Curr Pollut Rep, 2023, 9(3): 468-485.
[6] Ye JL, Qiu WY, Pang XY, et al. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway[J]. Environ Pollut, 2024, 347: 123713. doi:10.1016/j.envpol.2024.123713
[7] Zhang QP, Xia WT, Zhou XY, et al. PS-MPs or their co-exposure with cadmium impair male reproductive function through the miR-199a-5p/HIF-1α-mediated ferroptosis pathway[J]. Environ Pollut, 2023, 339: 122723. doi:10.1016/j.envpol.2023.122723
[8] 杨永浩, 董文亚, 刘静, 等. 山东省小麦粉镉污染状况调查及膳食暴露评估[J]. 中国食品卫生杂志, 2023, 35(7): 1042-1048. YANG Yonghao, DONG Wenya, LIU Jing, et al. Investigation of cadmium contamination in wheat flour and assessment on dietary exposure in Shandong Province[J]. Chinese Journal of Food Hygiene, 2023, 35(7): 1042-1048.
[9] Song Y, Wang Y, Mao WF, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5): e0177978. doi:10.1371/journal.pone.0177978
[10] Senathirajah K, Attwood S, Bhagwat G, et al. Estimation of the mass of microplastics ingested-a pivotal first step towards human health risk assessment[J]. J Hazard Mater, 2021, 404: 124004. doi:10.1016/j.jhazmat.2020.124004
[11] Lang M, Colby S, Ashby-Padial C, et al. An imaging review of the hippocampus and its common pathologies[J]. J Neuroimaging, 2024, 34(1): 5-25.
[12] Hoppe M, Habib A, Desai RY, et al. Human brain organoid code of conduct[J]. Front Mol Med, 2023, 3: 1143298. doi:10.3389/fmmed.2023.114329
[13] Li CX, Talukder M, Xu YR, et al. Cadmium aggravates the blood-brain barrier disruption via inhibition of the Wnt7A/β-catenin signaling axis[J]. Environ Pollut, 2023, 324: 121400. doi:10.1016/j.envpol.2023.121400
[14] Liu JY, Xie YR, Lu Y, et al. APP/PS1 gene-environmental cadmium interaction aggravates the progression of Alzheimers disease in mice via the blood-brain barrier, amyloid-β, and inflammation[J]. J Alzheimers Dis, 2023, 94(1): 115-136.
[15] Althagafy HS, Harakeh S, Azhari SA, et al. Quetiapine attenuates cadmium neurotoxicity by suppressing oxidative stress, inflammation, and pyroptosis[J]. Mol Biol Rep, 2024, 51(1): 660. doi:10.1007/s11033-024-09558-7
[16] Yang QY, Dai HX, Cheng Y, et al. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine[J]. Cell Rep, 2023, 42(4): 112346. doi:10.1016/j.celrep.2023.112346
[17] Santos D, Luzio A, Bellas J, et al. Microplastics- and copper-induced changes in neurogenesis and DNA methyltransferases in the early life stages of zebrafish[J]. Chem Biol Interact, 2022, 363: 110021. doi:10.1016/j.cbi.2022.110021
[18] Liu X, Yang HK, Yan XZ, et al. Co-exposure of polystyrene microplastics and iron aggravates cognitive decline in aging mice via ferroptosis induction[J]. Ecotoxicol Environ Saf, 2022, 233: 113342. doi:10.1016/j.ecoenv.2022.113342
[19] Yuan WK, Zhou YF, Chen YL, et al. Toxicological effects of microplastics and heavy metals on the Daphnia magna[J]. Sci Total Environ, 2020, 746: 141254. doi:10.1016/j.scitotenv.2020.141254
[20] Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities[J]. Stroke, 2022, 53(5): 1473-1486. doi:10.1161/STROKEAHA.122.036946
[21] Yang G, Gong CY, Zheng XY, et al. Early clues and molecular mechanism involved in neurodegenerative diseases induced in immature mice by combined exposure to polypropylene microplastics and DEHP[J]. Environ Pollut, 2023, 336: 122406. doi:10.1016/j.envpol.2023.122406
[22] 雷昌亭, 郑刘根, 杨永浩, 等. 十溴二苯乙烷和豌豆肽对实验大鼠认知功能的影响[J]. 兰州大学学报(医学版), 2023, 49(11): 18-25. LEI Changting, ZHENG Liugen, YANG Yonghao, et al. Effects of DBDPE and pea peptide on cognitive function in experimental rat[J]. Journal of Lanzhou University(Medical Sciences), 2023, 49(11): 18-25.
[23] Levy AM, Gomez-Puertas P, Tümer Z. Neurodevelopmental disorders associated with PSD-95 and its interaction partners[J]. Int J Mol Sci, 2022, 23(8): 4390. doi:10.3390/ijms23084390
[24] Shan S, Zhang YF, Zhao HW, et al. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice[J]. Chemosphere, 2022, 298: 134261. doi:10.1016/j.chemosphere.2022.134261
[25] Mao M, Liu R, Dong Y, et al. Resting heart rate, cognitive function, and inflammation in older adults: a population-based study[J]. Aging Clin Exp Res, 2023, 35(11): 2821-2829.
[26] Preeti K, Sood A, Fernandes V. Metabolic regulation of Glia and their neuroinflammatory role in Alzheimers disease[J]. Cell Mol Neurobiol, 2022, 42(8): 2527-2551.
[27] Liu FZ, Zhao YK, Pei YR, et al. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance[J]. Cell Commun Signal, 2024, 22(1): 159. doi:10.1186/s12964-024-01533-w
[28] Xu TC, Cui J, Xu R, et al. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp[J]. Aquat Toxicol, 2023, 262: 106659. doi:10.1016/j.aquatox.2023.106659
[29] Wang KT, Wang A, Deng JP, et al. Rivaroxaban down-regulates pyroptosis and the TLR4/NF-κB/NLRP3 signaling pathway to promote flap survival[J]. Int Immunopharmacol, 2024, 128: 111568. doi:10.1016/j.intimp.2024.111568
[30] Shi JD, Zhao D, Ren FT, et al. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment[J]. Sci Total Environ, 2023, 871: 161768. doi:10.1016/j.scitotenv.2023.161768
[31] Huang FY, Hu JZ, Chen L, et al. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: a meta-analysis[J]. J Hazard Mater, 2023, 448: 130887. doi:10.1016/j.jhazmat.2023.130887
[32] Cao L, Wu D, Liu P, et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China[J]. Sci Total Environ, 2021, 794: 148694. doi:10.1016/j.scitotenv.2021.148694
[1] 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32.
[2] 王苏玮,刘毅刚,安玉琴,袁树华,郝海燕,丁婷婷. 2018-2022年某县镉和铅多暴露途径的健康风险评估[J]. 山东大学学报 (医学版), 2024, 62(7): 106-113.
[3] 刘文竹,刘付臣. 1例脊髓延髓肌萎缩症运动神经元分化及分子病理分析[J]. 山东大学学报 (医学版), 2024, 62(4): 92-100.
[4] 王蕾,向淇,刘学伍. 伴系统性硬化症、类风湿关节炎的副肿瘤神经综合征1例[J]. 山东大学学报 (医学版), 2023, 61(7): 118-120.
[5] 黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿. 高糖环境下Lipin1对神经元代谢组学的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 1-8.
[6] 韩梅,孟维静,陶子琨,杨希,徐雅琪,穆华夏,卜伟晓,王素珍,石福艳. 基于G-计算的高血压、抑郁在2型糖尿病与认知功能之间的因果多中介分析[J]. 山东大学学报 (医学版), 2023, 61(10): 101-108.
[7] 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122.
[8] 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21.
[9] 于书卷,王美娟,陈丽,曹英娟,吕晓燕,刘雪燕,林鹏,颜景政. 老年2型糖尿病患者轻度认知功能障碍的影响因素[J]. 山东大学学报 (医学版), 2022, 60(11): 108-112.
[10] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[11] 赵永恒,高靓,李保敏. 儿童抗Ma2抗体阳性脑炎2例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(5): 96-103.
[12] 李宁,王翠兰,张玉荣. 帕金森病患者脑动脉多普勒测定指数及血清表皮生长因子与动脉硬化和认知障碍的关联分析[J]. 山东大学学报 (医学版), 2021, 59(3): 61-66.
[13] 柴然,张秀芹,徐春生,王寅,潘璐,王炳玲,段海平. 青岛市生活饮用水中微塑料分布特征[J]. 山东大学学报 (医学版), 2021, 59(12): 58-62.
[14] 孔文程,徐广润,贾俊丽,崔新宇. 脑腱黄瘤病1例并文献复习[J]. 山东大学学报 (医学版), 2021, 59(11): 72-75.
[15] 张晓倩,孟祥水,任庆国,南晓敏,安盼盼,帅欣艳,夏晓娜,王璇. 磁共振波谱成像对检测非痴呆型血管性认知障碍的探讨[J]. 山东大学学报 (医学版), 2019, 57(4): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!