您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (12): 58-62.doi: 10.6040/j.issn.1671-7554.0.2021.1068

• • 上一篇    下一篇

青岛市生活饮用水中微塑料分布特征

柴然,张秀芹,徐春生,王寅,潘璐,王炳玲,段海平   

  1. 青岛市疾病预防控制中心环境卫生科, 青岛市预防医学研究院, 山东 青岛 266033
  • 发布日期:2021-12-29
  • 通讯作者: 段海平. E-mail:duan_hp@126.com
  • 基金资助:
    国家基本公共卫生服务补助资金饮用水和环境健康危害因素监测项目;国家健康风险评估试点建设项目;青岛市医疗卫生优秀人才培养项目(2020-2022)

Distribution of microplastics in drinking water in Qingdao

CHAI Ran, ZHANG Xiuqin, XU Chunsheng, WANG Yin, PAN Lu, WANG Bingling, DUAN Haiping   

  1. Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention;
    Qingdao Institute of Preventive Medicine, Qingdao 266033, Shandong, China
  • Published:2021-12-29

摘要: 目的 探讨青岛市生活饮用水中微塑料的分布特征。 方法 对青岛市内不同水源类型的32个末梢水进行采样,每个样品取500 mL进行分析。利用激光红外成像(LDIR)分析水样中微塑料的种类、数量和粒径。 结果 32份样品中,有25份检出微塑料,检出率为78.1%。所有样本中微塑料丰度(个/L)最大值高达360,M(P25,P75)为18(2.5,91.5)。在检出微塑料的样品中,微塑料丰度高于300个/L的样品2份,均来自城区地表水;丰度低于中位数的样品8份,均来自于农村生活饮用水。来自城区地表水的样品中微塑料检出率最高,为81.8%(9/11)。检出的微塑料为:聚酰胺、聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯、聚丙烯、聚氨基甲酸乙酯、聚甲醛酯、聚氯乙烯、聚砜8种。其中PET占比(85.8%)最高,其次是聚酰胺(8.5%)。生活饮用水中微塑料丰度随粒径的增大而减少,粒径为0~30 μm的微塑料最多(49.7%),其次为30~50 μm(28.4%),50~100 μm(15.7%),100~300 μm(6.1%)。 结论 青岛市不同水源饮用水的微塑料含量不同,城区高于农村,PET材料制品作为饮用水中微塑料的主要来源应被重点关注。

关键词: 微塑料, 生活饮用水, 激光红外成像, 丰度, 粒径

Abstract: Objective To explore the distribution of microplastics in drinking water in Qingdao. Methods Altogether 32 tap water samples were collected from different water sources and 500 mL of each sample was used for analysis. The type, particle number and size of microplastics were analyzed with laser direct infrared imaging(LDIR). Results Microplastics were detected in 25 samples(78.1%). The maximum value of microplastics in all samples was 360/L, and the M(P25,P75)was 18(2.5,91.5)/L. Among the 25 samples with microplastics detected, 2 with abundance higher than 300 particles/L were from urban surface water; 8 with abundance less than the median were from rural tap water. The highest detection rate 81.8%(9/11)of microplastics was found in urban surface water. The 8 types of microplastics detected included polyamide(PA), polyethylene terephthalate(PET), polystyrene, polypropylene, polyurethane, polyoxymethylene ester, polyvinyl chloride and polysulfone. PET showed the highest proportion(85.8%), followed by PA(8.5%). The abundance of microplastics in drinking water decreased with the increase of particle size. Particles 0-30 μm in size had the highest proportion(49.7%), followed by 30-50 μm(28.4%), 50-100 μm(15.7%)and 100-300 μm(6.1%). Conclusion The abundance and proportion of microplastics in tap water from different sources are different in Qingdao, of which the urban areas are higher than the rural areas. PET products, as the main source of microplastics in drinking water, should arouse due attention.

Key words: Microplastics, Drinking water, Laser direct infrared imaging, Abundance, Particle size

中图分类号: 

  • R123.1
[1] Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi:10.1126/science.1094559.
[2] Shen M, Zhang Y, Zhu Y, et al. Recent advances in toxicological research of nanoplastics in the environment: a review [J]. Environ Pollut, 2019, 252(Pt A): 511-521. doi: 10.1016/j.envpol.2019.05.102.
[3] Eriksen M, Lebreton LC, Carson HS, et al. Plastic pollution in the worlds oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PLoS One, 2014, 9(12): e111913. doi: 10.1371/journal.pone.0111913.
[4] Peeken I, Primpke S, Beyer B, et al. Arctic Sea ice is an important temporal sink and means of transport for microplastic [J]. Nat Commun, 2018, 9(1): 1505. doi:10.1038/s41467-018-03825-5.
[5] Hurley R, Woodward J, Rothwell JJ. Microplastic contamination of river beds significantly reduced by catchment-wide flooding [J]. Nat Geosci, 2018, 11: 251-257. doi:10.1038/s41561-018-0080-1.
[6] Mani T, Hauk A, Walter U, et al. Microplastics profile along the Rhine River [J]. Sci Rep, 2015, 5: 17988. doi:10.1038/srep17988.
[7] Thompson RC, Swan SH, Moore CJ, et al. Our plastic age [J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1526): 1973-1976.
[8] Barnes DK, Galgani F, Thompson RC, et al. Accumulation and fragmentation of plastic debris in global environments [J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1526): 1985-1998.
[9] Lechner A, Keckeis H, Lumesberger-Loisl F, et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europes second largest river [J]. Environ Pollut, 2014, 188(100): 177-181.
[10] Browne MA, Crump P, Niven SJ, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks [J]. Environ Sci Technol, 2011, 45(21): 9175-9179.
[11] Zhao S, Zhu L, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution [J]. Mar Pollut Bull, 2014, 86(1/2): 562-568.
[12] Moore CJ, Lattin GL, Zellers AF. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California [J]. Revista de Gestão Costeira Integrada, 2011, 11(1): 65-73.
[13] Su L, Xue Y, Li L, et al. Microplastics in Taihu lake, China[J]. Environ Pollut, 2016, 216: 711-719. doi:10.1016/j.envpol.2016.06.036.
[14] Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes [J]. Mar Pollut Bull, 2013, 77(s 1-2): 177-182.
[15] Free CM, Jensen OP, Mason SA, et al. High-levels of microplastic pollution in a large, remote, mountain lake [J]. Marine Pollution Bulletin, 2014, 85(1): 156-163.
[16] Kosuth M, Mason SA, Wattenberg EV. Anthropogenic contamination of tap water, beer, and sea salt [J]. PLoS One, 2018, 13(4): e0194970. doi:10.1371/journal.pone.0194970.
[17] Pivokonsky M, Cermakova L, Novotna K, et al. Occurrence of microplastics in raw and treated drinking water [J]. Sci Total Environ, 2018, 643: 1644-1651. doi: 10.1016/j.scitotenv.
[18] Shen M, Zeng Z, Wen X, et al. Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha, China [J]. Environ Sci Polluti R, 2021, 28: 42313-42324. doi: 10.1007/s11356-021-13769-x.
[19] 许龙, 王志峰. 某水厂中微塑料的赋存及去除特性[J]. 净水技术, 2020, 39(7):109-113. XU Long, WANG Zhifeng. Occurrence and removal of microplastics in a water treatment plant [J]. Water Purification Technology, 2020, 39(7): 109-113.
[20] Wright SL, Kelly FJ. Plastic and human health: a micro issue? [J]. Environ Sci Technol, 2017, 51(12): 6634-6647.
[21] Vijayaraman S, Mondal P, Nandan A, et al. Presence of microplastic in water bodies and its impact on human health[C] //Adv Air Pollut Profiling Control, 2020. doi: 10.1007/978-981-15-0954-4_4.
[22] 李红岩, 张海峰, 李洁, 等. 饮用水中微塑料污染研究进展[J]. 净水技术, 2019, 38(7): 7-12. LI Hongyan, ZHANG Haifeng, LI Jie, et al. Review of microplastics pollution in drinking water [J]. Water Purification Technology, 2019, 38(7): 7-12.
[23] 李珊, 张岚, 陈永艳, 等. 饮用水中微塑料检测技术研究进展[J]. 净水技术, 2019, 38(4):1-8. LI Shan, ZHANG Lan, CHEN Yongyan, et al. Research progress on detection technology of microplastics in drinking water [J]. Water Purification Technology, 2019, 38(4): 1-8.
[24] Plastics Europe. Plastics-The Facts 2018:An analysis of European plastics production, demand and waste data[R]. Brussels, Belgium: Plastics Europe, 2019.
[25] Belzagui F, Crespi M, álvarez A, et al. Microplastics emissions: microfibers detachment from textile garments [J]. Environ Pollut, 2019, 248: 1028-1035. doi: 10.1016/j.envpol.
[26] Tong H, Jiang Q, Hu X, et al. Occurrence and identification of microplastics in tap water from China [J]. Chemosphere, 2020, 252: 126493. doi: 10.1016/j.chemosphere.
[27] Mintenig SM, Löder MGJ, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources [J]. Sci Total Environ, 2019, 648: 631-635. doi: 10.1016/j.scitotenv.2018.08.178.
[28] Käppler A, Fischer D, Oberbeckmann S, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? [J]. Anal Bioanal Chem, 2016, 408(29): 8377-8391.
[1] 刘芳盈,赵志强,孟超,王丹,李平,刘晓利,张殿平,王勤,王敏. 淄博市生活饮用水中硝酸盐暴露及其健康风险的时空分布特征[J]. 山东大学学报 (医学版), 2021, 59(12): 50-57.
[2] 李芸,杨明冲,刘师莲. 脑脊液双向电泳中去除高丰度蛋白技术的研究[J]. 山东大学学报(医学版), 2010, 48(12): 113-.
[3] 孙维彤,邹伟伟,李爱国,席延伟,张娜. 脂质体粒径对促进托氟啶口服吸收的影响[J]. 山东大学学报(医学版), 2007, 45(6): 639-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖伟玲,林亚杰,牟东珍,孙萍,梁淑娟 . 分泌型人IL-1β表达载体的构建及在H7402细胞中的表达[J]. 山东大学学报(医学版), 2008, 46(2): 119 -122 .
[2] 孙维彤,邹伟伟,李爱国,席延伟,张娜. 脂质体粒径对促进托氟啶口服吸收的影响[J]. 山东大学学报(医学版), 2007, 45(6): 639 -642 .
[3] 于清梅,武玉玲,宋海岩,尹华伟,庄园 . p38丝裂原活化蛋白激酶在小鼠早期胚胎及围植入期子宫内膜的表达[J]. 山东大学学报(医学版), 2008, 46(2): 123 -127 .
[4] 高静,陈雯,张同霞,王小花,戴廷军,姚红,赵秀鹤,迟兆富,单培彦 . 颞叶癫痫大鼠海马线粒体细胞色素氧化酶亚基Ⅲ和Ⅳ表达的变化[J]. 山东大学学报(医学版), 2007, 45(8): 817 -820 .
[5] 张勇,叶静,郭新星,肖水清. 牙周膜牵张成骨快速移动牙牙髓中IL-8表达的变化[J]. 山东大学学报(医学版), 2008, 46(4): 379 -381 .
[6] . 干细胞标记物LGR5在结直肠癌发生发展中的表达及意义[J]. 山东大学学报(医学版), 2009, 47(8): 85 -88 .
[7] 刘益民,杜鲁涛,王丽丽,蒋秀梅,李娟,曲爱林,王海燕,郑桂喜,张欣,杨咏梅,王传新. 膀胱癌患者血清microRNA检测中内参基因的筛选及验证[J]. 山东大学学报(医学版), 2014, 52(5): 86 -91 .
[8] 于渊1,李岩1,荣风年2,梁婧1,刘晓琳1,王福立1. 自体CIK细胞治疗对卵巢癌调节性T细胞的影响[J]. 山东大学学报(医学版), 2010, 48(5): 101 -104 .
[9] 王海峰,史本康,张克勤,李永智,朱耀丰,王海新. B超检测的精索静脉直径及返流与术后精液质量的关系[J]. 山东大学学报(医学版), 2007, 45(7): 751 -752 .
[10] 张元凯,刘培来,李德强,李明. 枢椎椎板螺钉联合寰椎侧块螺钉固定技术在复杂寰枢椎脱位中的应用[J]. 山东大学学报(医学版), 2010, 48(11): 98 .