您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (2): 118-124.doi: 10.6040/j.issn.1671-7554.0.2024.1140

• 综述 • 上一篇    

氧化应激在创伤性脑损伤诱发急性肺损伤中的研究进展

李响,张艺,王雪纯,徐梦超,王月兰   

  1. 山东大学附属省立医院麻醉科, 山东 济南 250021
  • 出版日期:2025-03-10 发布日期:2025-03-07
  • 通讯作者: 王月兰. E-mail:LXQ9066@163.com
  • 基金资助:
    国家自然科学基金(82070078)

Research progress on oxidative stress in acute lung injury induced by traumatic brain injury

LI Xiang, ZHANG Yi, WANG Xuechun, XU Mengchao, WANG Yuelan   

  1. Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
  • Online:2025-03-10 Published:2025-03-07

摘要: 创伤性脑损伤是全球性的重大公共健康问题,其诱发的急性肺损伤日益引起重视。创伤性脑损伤诱发的急性肺损伤是一个多因素、多机制的复杂病理状态,其有效管理要求对创伤性脑损伤和急性肺损伤之间的相互作用有深入理解。本文从氧化应激诱发肺泡-毛细血管屏障损害、肺部炎症以及加重凝血功能障碍三个方面对创伤性脑损伤诱发急性肺损伤的研究进展进行总结;同时探讨右美托咪定、胃泌素、虎杖苷以及伊诺肝素等药物的潜在治疗作用,为临床预防和治疗创伤性脑损伤诱发的急性肺损伤提供研究基础和理论指导。

关键词: 创伤性脑损伤, 急性肺损伤, 氧化应激, 肺泡-毛细血管屏障, 细胞凋亡

Abstract: Traumatic brain injury represents a significant global public health concern, with its associated acute lung injury gaining increased attention. The pathogenesis of acute lung injury induced by traumatic brain injury is complex, involving multiple factors and mechanisms. Effective management requires a comprehensive understanding of the interplay between traumatic brain injury and acute lung injury. This article summarizes recent advances in understanding how oxidative stress induces damage to the alveolar-capillary barrier, as well as its role in promoting pulmonary inflammation and exacerbating coagulation dysfunction in acute lung injury induced by traumatic brain injury. Additionally, it explores the potential therapeutic effects of agents such as dexmedetomidine, gastrin, polydatin, and enoxaparin, providing a foundation for future clinical strategies aimed at the prevention and treatment of acute lung injury induced by traumatic brain injury. These insights offer valuable theoretical guidance for clinicians in improving patient outcomes.

Key words: Traumatic brain injury, Acute lung injury, Oxidative stress, Alveolar-capillary barrier, Apoptosis

中图分类号: 

  • R563
[1] Cheng P, Yin P, Ning P, et al. Trends in traumatic brain injury mortality in China, 2006-2013: a population-based longitudinal study[J]. PLoS Med, 2017, 14(7): e1002332.
[2] Wang Y, Wang C, Zhang D, et al. Dexmedetomidine protects against traumatic brain injury-induced acute lung injury in mice[J]. Med Sci Monit, 2018, 24: 4961-4967. doi:10.12659/msm.908133.
[3] Cheng CY, Ho CH, Wang CC, et al. One-year mortality after traumatic brain injury in liver cirrhosis patients: a ten-year population-based study[J]. Medicine(Baltimore), 2015, 94(40): e1468.
[4] Skrifvars MB, Moore E, Mårtensson J, et al. Erythropoietin in traumatic brain injury associated acute kidney injury: a randomized controlled trial[J]. Acta Anaesthesiol Scand, 2019, 63(2): 200-207.
[5] 潘超. 中性粒细胞/淋巴细胞比值(NLR)与重型颅脑损伤继发肺部损伤的相关性研究[D]. 广州: 南方医科大学, 2020.
[6] Gu Z, Li L, Li Q, et al. Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation[J]. Int Immunopharmacol, 2021, 98: 107699. doi:10.1016/j.intimp.2021.107699.
[7] Singh A, Prajapati HP, Kumar R, et al. Prognostic role of catecholamine in moderate-to-severe traumatic brain injury: a prospective observational cohort study[J]. Asian J Neurosurg, 2022, 17(3): 435-441.
[8] Nin N, Ordonez R, Escudero R. Acute lung injury in trauma patients[J]. Curr Opin Crit Care, 2017, 23(6): 462-468.
[9] 朱钰珊,彭学容,范苏苏,等. 炎症与氧化应激在急性肺损伤中的作用研究进展[J]. 生物医学,2024, 14(1): 48-55. ZHU Yushan, PENG Xuerong, FAN Susu, et al. Research progress on the role of inflammation and oxidative stress in acute lung injury[J]. HJBM, 2024, 14(1): 48-55.
[10] Weber DJ, Gracon AS, Ripsch MS, et al. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation[J]. Sci Transl Med, 2014, 6(252): 252ra124.
[11] Kerr NA, de Rivero Vaccari JP, Umland O, et al. Human lung cell pyroptosis following traumatic brain injury[J]. Cells, 2019, 8(1): E69.
[12] Weaver LC, Bao F, Dekaban GA, et al. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats[J]. Exp Neurol, 2015, 271: 409-422. doi:10.1016/j.expneurol.2015.07.003.
[13] Yang SJ, Kim EA, Chang MJ, et al. N-adamantyl-4-methylthiazol-2-amine attenuates glutamate-induced oxidative stress and inflammation in the brain[J]. Neurotox Res, 2017, 32(1): 107-120.
[14] Jin W, Wu J, Wang H, et al. Erythropoietin administration modulates pulmonary Nrf2 signaling pathway after traumatic brain injury in mice[J]. J Trauma, 2011, 71(3): 680-686.
[15] Zhao Z, Zhou Y, Hilton T, et al. Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity[J]. Haematologica, 2020, 105(1): 209-217.
[16] Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: implications for neurocritical care patients[J]. World J Crit Care Med, 2015, 4(3): 163-178.
[17] Lotze MT, Tracey KJ. High-mobility group box 1 protein(HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5: 331-342. doi:10.1038/nri1594.
[18] Nicolls MR, Laubach VE. Traumatic brain injury: lungs in a RAGE[J]. Sci Transl Med, 2014, 6(252): 252fs34.
[19] Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481: 278-286. doi:10.1038/nature10759.
[20] Hoss F, Rodriguez-Alcazar JF, Latz E. Assembly and regulation of ASC specks[J]. Cell Mol Life Sci, 2017, 74(7): 1211-1229.
[21] Li YX, Huang H, Liu B, et al. Inflammasomes as therapeutic targets in human diseases[J]. Signal Transduct Target Ther, 2021, 6: 247. doi:10.1038/s41392-021-00650-z.
[22] Bai W, Zhu WL, Ning YL, et al. Dramatic increases in blood glutamate concentrations are closely related to traumatic brain injury-induced acute lung injury[J]. Sci Rep, 2017, 7: 5380. doi:10.1038/s41598-017-05574-9.
[23] Chamorro á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J]. Lancet Neurol, 2016, 15(8): 869-881.
[24] Said SI, Dey RD, Dickman K. Glutamate signalling in the lung[J]. Trends Pharmacol Sci, 2001, 22(7): 344-345.
[25] Collard CD, Park KA, Montalto MC, et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function[J]. J Biol Chem, 2002, 277(17): 14801-14811.
[26] Dickman KG, Youssef JG, Mathew SM, et al. Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity[J]. Am J Respir Cell Mol Biol, 2004, 30(2): 139-144.
[27] Shi Y, Liu T, Nieman DC, et al. Aerobic exercise attenuates acute lung injury through NET inhibition[J]. Front Immunol, 2020, 11: 409. doi:10.3389/fimmu.2020.00409.
[28] Pedrazza L, Cunha AA, Luft C, et al. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation[J]. J Cell Physiol, 2017, 232(12): 3552-3564.
[29] Harhangi BS, Kompanje EJO, Leebeek FWG, et al. Coagulation disorders after traumatic brain injury[J]. Acta Neurochir, 2008, 150(2): 165-175.
[30] Stein SC, Smith DH. Coagulopathy in traumatic brain injury[J]. Neurocrit Care, 2004, 1(4): 479-488.
[31] Zhao Z, Wang M, Tian Y, et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice[J]. Blood, 2016, 127(22): 2763-2772.
[32] Honda Y, Kamisato C, Morishima Y. Edoxaban, a direct factor Xa inhibitor, suppresses tissue-factor induced human platelet aggregation and clot-bound factor Xa in vitro: comparison with an antithrombin-dependent factor Xa inhibitor, fondaparinux[J]. Thromb Res, 2016, 141: 17-21. doi:10.1016/j.thromres.2016.02.028.
[33] Jiang L, Li L, Shen J, et al. Effect of dexmedetomidine on lung ischemia-reperfusion injury[J]. Mol Med Rep, 2014, 9(2): 419-426.
[34] Meng L, Li L, Lu S, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways[J]. Mol Immunol, 2018, 94: 7-17. doi:10.1016/j.molimm.2017.12.008.
[35] Jiang YX, Xia MZ, Xu J, et al. Dexmedetomidine alleviates pulmonary edema through the epithelial sodium channel(ENaC)via the PI3K/Akt/Nedd4-2 pathway in LPS-induced acute lung injury[J]. Immunol Res, 2021, 69(2): 162-175.
[36] 赵谦,杨剑. 右美托咪定调控细胞凋亡和焦亡在中枢神经保护作用中的机制研究进展 [J]. 中国医药, 2022, 17(5): 789-792. ZHAO Qian, YANG Jian. Advances in the mechanism of dexmedetomidine regulating cell apoptosis and pyroptosis in central nervous system protection [J]. China Medicine, 2022, 17(5): 789-792.
[37] 袁小林,邹婷婷,周楠,等. 右美托咪定在脑出血大鼠模型中的神经保护作用及可能机制 [J]. 解剖科学进展, 2023, 29(2): 161-164. YUAN Xiaolin, ZOU Tingting, ZHOU Nan, et al. Neuroprotective effects and possible mechanisms of dexmedetomidine in a rat model of intracerebral hemorrhage [J]. Prog Anat Sci, 2023, 29(2): 161-164.
[38] Zeng Z, Chen Z, Li T, et al. Polydatin: a new therapeutic agent against multiorgan dysfunction[J]. J Surg Res, 2015, 198(1): 192-199.
[39] Shao XF, Li B, Shen J, et al. Ghrelin alleviates traumatic brain injury-induced acute lung injury through pyroptosis/NF-κB pathway[J]. Int Immunopharmacol, 2020, 79: 106175. doi:10.1016/j.intimp.2019.106175.
[40] Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury[J]. Int J Mol Sci, 2019, 20(4): E831.
[41] Li Y, Wu B, Hu C, et al. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats[J]. Eur J Pharmacol, 2022, 914: 174668. doi:10.1016/j.ejphar.2021.174668.
[42] Hu Y, Lou J, Mao YY, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury[J]. Autophagy, 2016, 12(12): 2286-2299.
[43] Xu X, Zhi T, Chao H, et al. ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic brain injury-induced acute lung injury[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1663-1674.
[44] Kerr NA, de Rivero Vaccari JP, Weaver C, et al. Enoxaparin attenuates acute lung injury and inflammasome activation after traumatic brain injury[J]. J Neurotrauma, 2021, 38(5): 646-654.
[45] Zhang CN, Li FJ, Zhao ZL, et al. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(5): L885-L891.
[46] 汤睿,周敏. 机械通气对急性颅脑损伤患者肺脑保护作用的研究进展[J]. 中华危重病急救医学,2020, 32(12): 1533-1536.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 姜子晗,芦兴晨,孙露,赵蕙琛,左丹,马小莉,刘元涛,张玉超. NR4A1通过IκBα/NF-κB通路调控过氧化氢诱导人脐静脉内皮细胞凋亡的机制[J]. 山东大学学报 (医学版), 2024, 62(3): 11-19.
[3] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[4] 扈艳雯,赵蕙琛,马小莉,刘元涛,张玉超. GLP-1通过细胞色素P450表氧化酶途径抑制氧化应激[J]. 山东大学学报 (医学版), 2023, 61(8): 10-16.
[5] 闫丛丛,陈辰,谢倩,王亚楠,张鑫璐,张迎春,武斌. 双酚A暴露对KGN细胞m6A修饰水平的影响[J]. 山东大学学报 (医学版), 2023, 61(8): 17-23.
[6] 刘洋,陈贵海. 寒痉汤对冷刺激诱导主动脉平滑肌细胞氧化应激的影响及机制[J]. 山东大学学报 (医学版), 2023, 61(8): 24-30.
[7] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[8] 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9.
[9] 杨元凤,熊高才,黎豫川,罗玉玲,张敬杰. 鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响[J]. 山东大学学报 (医学版), 2023, 61(10): 9-16.
[10] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[11] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[12] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[13] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[14] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[15] 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5.
Viewed
Full text
28
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 28

  From local
  Times 28
  Rate 100%

Abstract
72
Just accepted Online first Issue
0 0 72
  From Others local
  Times 71 1
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!