您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (10): 1-8.doi: 10.6040/j.issn.1671-7554.0.2023.0196

• 基础医学 •    下一篇

脂多糖诱导Treg失衡对实验性自身免疫性重症肌无力的免疫调节作用

黎良康1,司伟岳1,吴兴原2,周阳2,魏舒丽1,董晶2,李晓丽1,2,段瑞生1,2   

  1. 1.山东大学附属山东省千佛山医院神经内科, 山东 济南 250014;2.山东第一医科大学第一附属医院(山东省千佛山医院)神经内科, 山东省神经免疫研究所, 山东省医药卫生神经免疫重点实验室, 山东 济南 250014
  • 发布日期:2023-11-08
  • 通讯作者: 段瑞生. E-mail:ruisheng_duan@163.com 李晓丽. E-mail:li2006xl@163.com

Immunomodulatory effects of lipopolysaccharide-induced Treg imbalance on experimental autoimmune myasthenia gravis

LI Liangkang1, SI Weiyue1, WU Xingyuan2, ZHOU Yang2, WEI Shuli1, DONG Jing2, LI Xiaoli1,2, DUAN Ruisheng1,2   

  1. 1. Department of Neurology, Shandong Provincial Qianfoshan Hospital of Shandong University, Jinan 250014, Shandong, China;
    2. Department of Neurology, The First Affiliated Hospital of Shandong First Medical University &
    Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, Shandong, China
  • Published:2023-11-08

摘要: 目的 探究实验性自身免疫性重症肌无力(EAMG)合并急性感染时免疫细胞的改变及其功能特征。 方法 利用大鼠乙酰胆碱受体(AChR)α亚基的97-116(R97-116)肽段免疫6~8周龄雌性Lewis大鼠,发病高峰期腹腔注射脂多糖(LPS)诱导急性感染模型为LPS组,腹腔注射PBS作为对照(PBS组)。记录临床评分及体质量。流式细胞术检测外周循环和淋巴器官中Th1、Th17、Treg细胞的比例以及脾脏滤泡辅助T细胞(Tfh)、树突状细胞(DC)、生发中心B细胞(GCB)的比例和功能。对脾脏分别进行PNA及CD4、Foxp3免疫荧光检测。采用酶联免疫吸附实验(ELISA)检测血清抗R97-116 IgG抗体及亚型水平。 结果 与PBS组相比,LPS组大鼠临床症状较重、体质量减轻,脾脏Treg细胞(CD4+CD25+)比例(P=0.016)及Foxp3的表达均明显减少。另外,LPS组大鼠脾脏PNA的表达增多且呈簇状,且GCB细胞表达MHC-Ⅱ及分泌IL-6的比例明显增加(P=0.002、P=0.017)。LPS组大鼠DC亚群表达CD80的平均荧光素强度(MFI)增加,但无统计学差异(P=0.057)。LPS组大鼠外周血免疫球蛋白G(IgG)水平无变化,保护性抗体IgG1水平降低(P=0.005),致病性抗体IgG2b水平无变化,IgG1/IgG2b下调(P=0.018)。 结论 LPS可能通过减少脾脏Treg细胞的比例及Foxp3的表达,增强脾脏生发中心反应、GCB细胞的功能以及DC亚群共刺激的能力来下调保护性抗体水平,最终导致EAMG大鼠的临床症状加重。

Abstract: Objective To investigate the changes and functional characteristics of immune cells in experimental autoimmune myasthenia gravis(EAMG)complicated with acute infection. Methods Female Lewis rats aged 6-8 weeks were immunized with R97-116 peptide of rat acetylcholine receptor alpha subunit. Lipopolysaccharide(LPS)was injected intraperitoneally to induce acute infection(LPS group), and PBS was injected intraperitoneally to set controls(PBS group). Clinical scores and body weight were recorded. Flow cytometry was used to detect the frequencies of Th1, Th17 and Treg cells from lymphoid organs and peripheral circulation, and follicular helper T(Tfh)cells, dendritic cells(DCs)and germinal center B(GCB)cells in the spleen. Peanut agglutinin(PNA), CD4 and Foxp3 levels in the spleen were detected with immunofluorescence. The levels of anti-R97-116 IgG antibody and its subclasses in serum were analyzed with ELISA. Results Compared with the PBS group, the LPS group had aggravated clinical symptoms and lower body weight. The frequency of Treg(CD4+CD25+)in the spleen was decreased(P=0.016), and the Foxp3 expression in the spleen was reduced. In addition, the PNA in the spleen of the LPS group was increased and clustered, and the expression of MHC-Ⅱ(P=0.002)and secretion of IL-6(P=0.017)of GCB cells were increased. The mean fluorescence intensity(MFI)of DC subclass expressing CD80 was increased but not statistically significant(P=0.057). The level of protective antibody IgG1 in peripheral blood was decreased in LPS group(P=0.005), the level of pathogenic antibody IgG2b did not change, and IgG1/IgG2b was down-regulated(P=0.018). Conclusion LPS may reduce the frequency of Treg cells and the expression of Foxp3 in the spleen, enhance the germinal center response, function of GCB cells and ability of DC co-stimulation, eventually leads to the aggravation of clinical symptoms of EAMG rats.

[1] 常婷.中国重症肌无力诊断和治疗指南(2020版)[J].中国神经免疫学和神经病学杂志,2021,28(1):1-12. CHANG Ting. China guidelines for the diagnosis and treatment of myasthenia gravis(2020 version)[J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(1): 1-12.
[2] Gilhus NE, Romi F, Hong Y, et al. Myasthenia gravis and infectious disease [J]. Neurol, 2018, 265(6): 1251-1258.
[3] Kassardjian CD, Widdifield J, Paterson JM, et al. Serious infections in patients with myasthenia gravis: population-based cohort study [J]. Eur J Neurol, 2020, 27(4): 702-708.
[4] Su M, Jin S, Jiao K, et al. Pneumonia in myasthenia gravis: Microbial etiology and clinical management [J]. Front Cell Infect Microbiol, 2022, 12: 1016728. doi: 10.3389/fcimb.2022.1016728.
[5] Ramos-Fransi A, Rojas-Garcia R, Segovia S, et al. Myasthenia gravis: descriptive analysis of life-threatening events in a recent nationwide registry [J]. Eur J Neurol, 2015, 22(7): 1056-1061.
[6] Rodrigues CL, de Freitas HC, Lima PRO, et al. Myasthenia gravis exacerbation and myasthenic crisis associated with COVID-19: case series and literature review [J]. Neurol Sci, 2022, 43(4): 2271-2276.
[7] Villegas JA, Van Wassenhove J, Le Panse R, et al. An imbalance between regulatory T cells and T helper 17 cells in acetylcholine receptor-positive myasthenia gravis patients [J]. Ann N Y Acad Sci, 2018, 1413(1): 154-162.
[8] Cao Y, Amezquita RA, Kleinstein SH, et al. Autoreactive T cells from patients with myasthenia gravis are characterized by elevated IL-17, IFN-gamma, and GM-CSF and diminished IL-10 production [J]. J Immunol, 2016, 196(5): 2075-2084.
[9] Barzago C, Lum J, Cavalcante P, et al. A novel infection- and inflammation associated molecular signature in peripheral blood of myasthenia gravis patients [J]. Immunobiology, 2016, 221(11): 1227-1236.
[10] Jin W, Yang Q, Peng Y, et al. Single-cell RNA-Seq reveals transcriptional heterogeneity and immune subtypes associated with disease activity in human myasthenia gravis [J]. Cell discovery, 2021, 7(1): 1-18.
[11] Ashida S, Ochi H, Hamatani M, et al. Immune skew of circulating follicular helper T cells associates with myasthenia gravis severity [J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(2):e945. doi:10.1212/NXI.0000000000000945.
[12] Villegas JA, Van Wassenhove J, Merrheim J, et al. Blocking interleukin-23 ameliorates neuromuscular and thymic defects inmyasthenia gravis [J]. J Neuroinflammation, 2023, 20(1): 9.
[13] Huan X, Luo S, Zhong H, et al. In-depth peripheral CD4+ T profile correlates with myasthenic crisis [J]. Ann Clin Transl Neurol, 2021, 8(4): 749-762.
[14] Wang Z,Yan Y. Immunopathogenesis in myasthenia gravis and neuromyelitis optica [J]. Front Immunol, 2017, 8: 1785. doi: 10.3389/fimmu.2017.01785.
[15] Abebe F. Synergy between Th1 and Th2 responses during Mycobacterium tuberculosis infection: a review of current understanding [J]. Int Rev Immunol, 2019, 38(4): 172-179.
[16] Cardona P, Cardona PJ. Regulatory T cells in mycobacterium tuberculosis infection [J]. Front Immunol, 2019,10:2139. doi:10.3389/fimmu.2019.02139.
[17] Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis [J]. Intensive Care Med Exp, 2020, 8(Suppl1): 20.
[18] 杨雪,李智,周宗贞. 免疫细胞在脓毒血症中的作用及机制研究进展[J].药学进展, 2020, 44(3):215-221.YANG Xue, LI Zhi, ZHOU Zongzhen. Advances in Research on the Role and Mechanism of Immune Cells in Sepsis[J]. Progress in Pharmaceutical Sciences, 2020, 44(3): 215-221.
[19] Green AM, Mattila JT, Bigbee CL, et al. CD4(+)regulatory T cells in a cynomolgus macaque model of mycobacterium tuberculosis infection [J]. J Infect Dis, 2010, 202(4): 533- 541.
[20] Bayati F, Mohammadi M, Valadi M,et al. The therapeutic potential of regulatory T cells: challenges and opportunities [J]. Front Immunol,2021,11:585819.doi:10.3389/fimmu.2020.585819.
[21] Xiao BG, Duan RS, Link H, et al. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells [J]. Cell Immunol, 2003, 223(1): 63-69.
[22] Puga I, Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen [J]. Nat Immunol, 2011, 13(2): 170-180.
[23] Kolar GR, Mehta D, elayo R, et al. A novel human B cell subpopulation representing the initial germinal center population to express AID [J]. Blood, 2007, 109(6): 2545-2552.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[6] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[9] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[10] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .