您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (7): 23-30.doi: 10.6040/j.issn.1671-7554.0.2016.1682

• 基础医学 • 上一篇    下一篇

Sirtuin在低氧诱导人脐带间充质干细胞增殖中的作用

王凯民1,谭娟娟2,严志强3,李志强1   

  1. 1.南方医科大学第三临床医学院附属奉贤区中心医院神经外科, 上海 201499;2.上海交通大学生命科学技术学院, 上海 200240;3.南方医科大学第三临床医学院附属奉贤区中心医院中心实验室, 上海 201499
  • 收稿日期:2016-12-20 出版日期:2017-07-10 发布日期:2017-07-10
  • 通讯作者: 李志强. E-mail:lzq_999@163.com E-mail:lzq_999@163.com
  • 基金资助:
    国家自然科学基金(10972141,11172176,31570949)

Effects of Sirtuin on hypoxia-induced proliferation of human umbilical cord-derived mesenchymal stem cells

WANG Kaimin1, TAN Juanjuan2, YAN Zhiqiang3, LI Zhiqiang1   

  1. 1. Department of Neurosurgery, Shanghai Fengxian District Central Hospital Affiliated to the Third Clinical Medical College of Southern Medical University, Shanghai 201499, China;
    2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Department of Central Laboratory, Shanghai Fengxian District Central Hospital Affiliated to the Third Clinical Medical College of Southern Medical University, Shanghai 201499, China
  • Received:2016-12-20 Online:2017-07-10 Published:2017-07-10

摘要: 目的 探讨低氧对人脐带间充质干细胞(hUC-MSCs)中Sirtuin(SIRT)蛋白表达影响及与细胞增殖的关系。 方法 组织块贴壁法分离和培养hUC-MSCs;流式细胞仪鉴定细胞表面标志物; CCK-8法测定低氧与常氧下不同时间点hUC-MSCs的增殖能力;流式细胞仪检测低氧与常氧下细胞周期的变化;免疫荧光与Western blotting测定低氧与常氧下细胞SIRT蛋白定位与表达。 结果 成功分离hUC-MSCs;细胞CD90、CD105、CD29、CD44高表达,CD14、CD19、CD34、CD45、HLA-DR无表达;CCK-8测定低氧培养24、48、72 h细胞的增殖能力均高于常氧培养(P均<0.05);在低氧下培养24、48 h后S期细胞比率高于常氧培养(P均<0.05);免疫荧光检测SIRT1、6位于细胞核内,SIRT2定位于胞浆,SIRT3、4、5定位于线粒体。Western blotting测定SIRT1在低氧培养24、48 h蛋白表达量均高于常氧条件(P均<0.05),常氧培养72 h的SIRT1表达量高于24 h及48 h(P均<0.05);SIRT2表达量在低氧培养24 h高于常氧培养(P<0.05),48 h后低于常氧培养,72 h后高于常氧培养(P<0.05);低氧培养24、48、72 h后SIRT5的表达量均高于常氧处理(P均<0.05),常氧与低氧培养细胞48 h和72 h后均高于24 h时SIRT5的表达(P均<0.05)。 结论 低氧处理24、48、72 h均可以促进hUC-MSCs的增殖。低氧诱导SIRT1、2与5表达改变提示SIRT1、2、5可能参与了低氧对hUC-MSCs增殖的调控。

关键词: 低氧, Sirtuin, 增殖, 人脐带间充质干细胞

Abstract: Objective To explore the effect of hypoxia on Sirtuin(SIRT)protein expression in human umbilical cord-derived mesenchymal stem cells(hUC-MSCs). Methods hUC-MSCs were isolated and cultured by explant technique. The cells were further expanded and assessed for their morphology and phenotype by flow cytometry. The proliferation of hUC-MSCs under normoxia(21%O2)and hypoxia(5%O2)was evaluated by CCK-8; Cell cycle was analyzed by flow cytometry. Immunofluorescence assay was used to detect the location of SIRT(1-6)under normoxia and hypoxia 山 东 大 学 学 报 (医 学 版)55卷7期 -王凯民,等.Sirtuin在低氧诱导人脐带间充质干细胞增殖中的作用 \=-conditions. Expressions of SIRT(1,2,5)under normoxia and hypoxia conditions for different times(24, 48, 72 h )were detected by Western blotting. Results hUC-MSCs were successfully isolated from umbilical cord. Flow cytometry showed that CD105, CD90, CD44 and CD29 were positive, while CD14, CD19, CD34, CD45 and HLA-DR were negative on hUC-MSCs. The proliferation of hUC-MSCs was enhanced under hypoxia compared with normoxia(all P<0.05). The cells fraction at S phase was also increased under hypoxia compared with normoxia condition after being cultured for 24 h and 48 h(all P <0.05). Immunofluorescence showed that no matter under hypoxia or nomoxia conditions, SIRT1 and SIRT6 were localized in the nucleus, SIRT2 was localized in cytoplasm, and SIRT3, SIRT4, SIRT5 were localized in mitochondria. Western blotting showed the expression of SIRT1 in hUC-MSCs increased under hypoxia after being cultured for 24 h and 48 h(all P<0.05). Similarly, the expression of SIRT5 was increased under hypoxia at all three time points(all P<0.05). The expression of SIRT2 in hypoxia was increased after being cultured for 24 h and 72 h compared with normoxic cells(all P<0.05), however, the expression of SIRT2 under hypoxia condition was lower than that under normoxia condition for 48 h(P<0.05). Conclusion Hypoxia can increase hUC-MSCs’ proliferation. The expressions of SIRT1, SIRT2, SIRT5 were affected by hypoxia, which implies that SIRT1, SIRT2, SIRT5 may be involved in the regulation of hypoxia induced proliferation of hUC-MSCs.

Key words: Human umbilical cord-derived mesenchymal stem cell, Sirtuin, Proliferation, Hypoxia

中图分类号: 

  • R329.2
[1] Han YF, Tao R, Sun TJ, et al. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods[J]. Cytotechnology, 2013, 65(5): 819-827.
[2] Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3): 339-347.
[3] Kim JH, Park SH, Park SG, et al. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells[J]. Stem Cells Dev, 2011, 20(10): 1753-1761.
[4] Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process[J]. PloS One, 2008, 3(5): e2213. doi: 10.1371/journal.pone.0002213.
[5] Shibata KR, Aoyama T, Shima Y, et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion[J]. Stem Cells, 2007, 25(9): 2371-2382.
[6] Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation[J]. Circulation, 2011, 124(3): 67-76. doi:10.1161/CIRCULATIONAHA.111.027813.
[7] Marieke RVR, Mensah FKF, Korevaar SS, et al. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells[J]. Front Immunol, 2013, 4(1): 203. doi: 10.3389/fimmu.2013.00203.
[8] 陈亭, 周燕, 张治萍,等.间充质干细胞在低氧环境下的增殖、代谢与成骨分化:胎盘羊膜及骨髓来源间充质干细胞的对比[J]. 中国组织工程研究, 2010, 14(6): 957-961. CHEN Ting, ZHOU Yan, ZHANG Zhiping, et al. Proliferation, metabolism, and osteogenic differentiation of mesenchymal stem cells under hypoxia: cell sources of placenta amniotic versus bone marrow[J]. J Clin Rehabil Tis Eng Res, 2010, 14(6): 957-961.
[9] Guarente L. Sirtuins in aging and disease[J]. Cold Spring Harb Symp Quant Biol, 2007, 72(1): 483-488.
[10] Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation[J]. J Biol Chem, 2012, 287(51): 42419-42427.
[11] Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic[J]. Clin Epigenetics, 2016, 8(1): 1-21.
[12] Kiran S, Anwar T, Kiran M, et al. Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin![J]. Cell Signal, 2015, 27(3): 673-682.
[13] 韩潇, 白海, 尹娇娇,等. 氯化钴模拟低氧环境下人脐带间充质干细胞增殖及基因蛋白的表达[J]. 中国组织工程研究, 2015, 19(45): 7268-7273. HAN Xiao, BAI Hai, YIN Jiaojiao, et al. Effect of cobalt chloride-induced hypoxia on proliferation of human umbilical cord-derived mesenchymal stem cells and related gene and protein expressions[J]. J Clin Rehabil Tis Eng Res, 2015, 19(45): 7268-7273.
[14] Tsai CC, Chen YJ, Yew TL, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST[J]. Blood, 2010, 117(2): 459-469.
[15] Peng L, Shu X, Lang C, et al. Effects of hypoxia on proliferation of human cord blood-derived mesenchymal stem cells[J]. Cytotechnology, 2016, 68(4): 1-8.
[16] Yuan HF, Zhai C, Yan XL, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells[J]. J Mol Med, 2012, 90(4): 389-400.
[17] Wang X, Ma S, Meng N, et al. Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs[J]. Mol Cells, 2016, 39(5): 418-425.
[18] Yuan HF, Zhai C, Yan XL, et al. SIRT1 is required for long[J]. J Mol Med, 2012, 90(4): 389-400.
[19] 徐芬, 严晋华, 梁华,等. SIRT1敲除对C57BL/6J小鼠脂肪细胞分化的影响和机制探讨[J]. 中华医学杂志, 2013, 93(36): 2857-2860. XU Fen, YAN Jinhua, LIANG Hua, et al. SIRT1 knockout impairs the differentiation of adipocyte in C57BL/6J mice and its underlying mechanism[J]. Natl Med J China, 2013, 93(36): 2857-2860.
[20] North BJ, Marshall BL, Borra MT,et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase[J]. Mol Cell, 2003, 11(2): 437-444.
[21] Peck B, Chen CY, Ho KK, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2[J]. Mol Cancer Ther, 2010, 9(4): 844-855.
[22] 马珊珊, 崔渊博, 姚宁,等. sirt2基因高表达对人脐带间充质干细胞衰老的抑制作用[J]. 郑州大学学报(医学版), 2016, 51(1): 10-14. MA Shanshan, CUI Yuanbo, YAO Ning, et al. Inhibition of sirt2 overexpression on aging of human umbilical cord mesenchymal stem cells[J]. Journal of Zhengzhou University(Medical Sicences), 2016, 51(1): 10-14.
[23] Si X, Chen W, Guo X, et al. Activation of GSK3β by sirt2 is required for early lineage commitment of mouse embryonic stem cell[J]. PloS One, 2013, 8(10): e76699-e76699. doi: 10.1371/journal.pone.0076699.
[24] Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation[J]. Cell Metab, 2007, 6(2): 105-114.
[25] Seo KS, Park JH, Heo JY, et al. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation[J]. Oncogene, 2015, 34(11): 1354-1362.
[26] Lin ZF, Xu HB, Wang JY, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS[J]. Biochem Biophys Res Commun, 2013, 441(1): 191-195.
[27] Hsu YC, Wu YT, Yu TH, et al. Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer[J]. Semin Cell Dev Biol, 2016, 52: 119-131. doi: 10.1016/j.semcdb.2016.02.011.
[28] Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5[J]. J Mol Biol, 2008, 382(3): 790-801.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13.
[3] 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34-39.
[4] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[5] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
[6] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37.
[7] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38-46.
[8] 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99.
[9] 孙泽雨,陈颖,林家香,刘娟,赵蔚明. 磷脂酰肌醇-4-磷酸酶II型对宫颈癌细胞增殖及凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(11): 1-6.
[10] 王甜甜,陈洁. EFEMP2在子宫内膜癌组织及细胞中的表达及其临床意义[J]. 山东大学学报(医学版), 2017, 55(10): 52-58.
[11] 赵路,矫俊,张腾,焦薪霖,崔保霞. 肝X受体在卵巢癌组织中的表达及T0901317在卵巢癌细胞系SKOV3中的作用[J]. 山东大学学报(医学版), 2017, 55(1): 49-53.
[12] 田斯琦,刘日强,杨宁,韦薇,杨华伟. 核糖体S6蛋白激酶4变异体基因表达对乳腺癌细胞增殖的影响[J]. 山东大学学报(医学版), 2016, 54(9): 32-36.
[13] 魏秀娟,吴修胤, 佟冬冬,李静,杨晓露,张风河. BDNF/TrkB在舌鳞状细胞癌中的表达及BDNF对其增殖能力的影响[J]. 山东大学学报(医学版), 2016, 54(6): 50-54.
[14] 赵秀芹,邓春颖,李世英,张晋霞,贺永贵,余红,刘斌. 丁苯酞注射液对大鼠局灶性脑缺血再灌注损伤的神经保护作用[J]. 山东大学学报(医学版), 2016, 54(4): 25-31.
[15] 赵云霞,宋静,张灿灿,林雪艳,尉蔚,田永杰. CXXC4增强上皮性卵巢癌细胞对化疗药物的敏感性[J]. 山东大学学报(医学版), 2016, 54(3): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!