您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (7): 31-37.doi: 10.6040/j.issn.1671-7554.0.2017.198

• 基础医学 • 上一篇    下一篇

不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响

李景媛1,宋玲2,林松3,宋晖4   

  1. 1. 山东大学口腔医院黏膜病科, 山东省口腔组织再生重点实验室, 山东 济南 250012;2. 青岛市市立医院口腔科, 山东 青岛 266011;3. 济南市口腔医院儿童牙病科, 山东 济南 250001;4. 山东大学口腔医院特诊科, 山东省口腔组织再生重点实验室, 山东 济南 250012
  • 收稿日期:2017-03-07 出版日期:2017-07-10 发布日期:2017-07-10
  • 通讯作者: 宋晖. E-mail:songhui@sdu.edu.cn林松. E-mail:ls196868@163.com E-mail:songhui@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2015HM019);山东省教育奖补专项基金(鲁财教指[2014]94号);济南市高校科技创新计划项目(201401259)

Effects of carbon monoxide releasing molecule-3 on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells

LI Jingyuan1, SONG Ling2, LIN Song3, SONG Hui4   

  1. 1. Department of Oral Mucosal Diseases, Stomatological Hospital of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, Shandong, China;
    2. Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266011, Shandong, China;
    3. Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan 250001, Shandong, China;
    4. Department of VIP Clinic, Stomatological Hospital of Shandong University, Shandong Provincial Key Laboratory ofOral Tissue Regeneration, Jinan 250012, Shandong, China
  • Received:2017-03-07 Online:2017-07-10 Published:2017-07-10

摘要: 目的 探讨不同浓度一氧化碳释放分子-3(CORM-3)对大鼠骨髓间充质干细胞(BMSCs)成骨分化的影响。 方法 实验分A、B两部分,各部分均包括5组,A部分:矿化组,100、200、400 μmol/L CORM-3组,对照组;B部分:矿化组,100、200、400 μmol/L CORM-3-矿化组,对照组。采用Real-time PCR法和Western blotting法分别检测成骨相关基因Runx2和OPNmRNA与蛋白的表达,茜素红染色检测成骨能力。采用SPSS 19.0软件对数据进行统计学分析。 结果 100、200 μmol/L CORM-3可促进BMSCs增殖,差异有统计学意义(P=0.034,P<0.001);单纯CORM-3对BMSCs成骨分化无影响;BMSCs经200、400 μmol/L CORM-3预处理后再行矿化诱导,7 d后大鼠BMSCs的Runx2和OPNmRNA表达增强,与矿化组比较差异有统计学意义(Runx2:P=0.005,P=0.006;OPN:P=0.010,P=0.028),其蛋白表达及21 d后的成骨能力较矿化组均明显增强,且200 μmol/L CORM-3预处理的效果优于400 μmol/L CORM-3。 结论 CORM-3预处理可促进体外BMSCs成骨分化,200 μmol/L为CORM-3用于实验的适宜浓度。

关键词: 一氧化碳释放分子-3, 骨髓间充质干细胞, Runt相关转录因子2, 骨桥蛋白, 成骨分化

Abstract: Objective To investigate the effects of carbon monoxide releasing molecule-3(CORM-3)on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells(BMSCs). Methods The BMSCs were divided into 2 groups, group A and group B. Group A was subdivided into osteogenic group, 100 μmol/L CORM-3 group, 200 μmol/L CORM-3 group, 400 μmol/L CORM-3 group and control group. Group B was subdivided into osteogenic 山 东 大 学 学 报 (医 学 版)55卷7期 -李景媛,等.不同浓度一氧化碳释放分子-3对大鼠骨髓间充质干细胞成骨分化的影响 \=-group, 100 μmol/L CORM-3-osteogenic group, 200 μmol/L CORM-3-osteogenic group, 400 μmol/L CORM-3-osteogenic group and control group. The mRNA and protein expressions of Runx2 and OPN were detected with Real-time PCR and Western blotting. The cell mineralization was determined with alizarin red staining. Data obtained were analyzed with SPSS 19.0 software. Results CORM-3 at concentrations of 100 μmol/L and 200 μmol/L could significantly promote the proliferation of BMSCs(P=0.034, P<0.001). The mRNA expressions of Runx2 and OPN in 200 μmol/L and 400 μmol/L CORM-3-osteogenic groups were significantly higher than those in the osteogenic group on day 7(Runx2: P=0.005, P=0.006; OPN: P=0.010, P=0.028). Meanwhile, the protein expressions of Runx2 and OPN on day 7 and cell mineralization on day 21 in 200 μmol/L and 400 μmol/L CORM-3-osteogenic groups were enhanced compared with the osteogenic group, and the 200 μmol/L group had better results than the 400 μmol/L group. Conclusion CORM-3 may promote osteogenic differentiation of BMSCs and 200 μmol/L is the suitable concentration.

Key words: Carbon monoxide releasing molecules-3, Osteogenic differentiation, Bone marrow-derived mesenchymal stem cells, Runt-related transcription factor 2, Osteopontin

中图分类号: 

  • R781.4
[1] Loesche WJ, Grossman NS. Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment[J]. Clin Microbiol Rev, 2001, 14(4): 727-752.
[2] Rauh J, Milan F, Gunther KP, et al. Bioreactor systems for bone tissue engineering[J]. Tissue Eng Part B Rev, 2011, 17(4): 263-280.
[3] Tsai TL, Li WJ. Identification of bone marrow-derived soluble factors regulating human mesenchymal stem cells for bone regeneration[J]. Stem Cell Reports, 2017, 8(2):387-400.
[4] Motterlini R, Mann BE, Johnson TR, et al. Bioactivity and pharmacological actions of carbon monoxide-releasing molecules[J]. Curr Pharm Des, 2003, 9(30): 2525-2539.
[5] Luria EA, Owen ME, Friedenstein AJ, et al.Bone formation in organ cultures of bone marrow[J]. Cell Tissue Res, 1987, 248(2): 449-454.
[6] Corsetti A, Bahuschewskyj C, Ponzoni D, et al. Repair of bone defects using adipose-derived stem cells combined with alpha-tricalcium phosphate and gelatin sponge scaffolds in a rat model[J]. J Appl Oral Sci, 2017, 25(1): 10-19.
[7] Meng J, Ma X, Wang N, et al. Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through β-Catenin [J]. Stem Cell Reports, 2016, 6(4): 579-591.
[8] Ma C, Wei Q, Cao B, et al. A multifunctional bioactive material that stimulates osteogenesis and promotes the vascularization bone marrow stem cells and their resistance to bacterial infection [J]. PLoS One, 2017, 12(3): e0172499. doi: 10.1371/journal.pone.0172499. eCollection 2017.
[9] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
[10] Lu T, Huang YX, Zhang C, et al. Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells[J]. Genet Mol Res, 2015, 14(3):11535-11542.
[11] Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles [J]. Acta Biomater, 2016, 33: 96-109. doi: 10.1016/j.actbio.2016.01.024. Epub 2016 Jan 21.
[12] Maiti SK, Ninu AR, Sangeetha P, et al. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit [J]. J Stem Cells Regen Med, 2016, 12(2): 87-99.
[13] Bornes TD, Jomha NM, Mulet-Sierra A, et al. Porous scaffold seeding and chondrogenic differentiation of BMSC-seeded scaffolds [J]. Bio Protoc, 2015, 5(24). pii: e1693.
[14] Vander Plas A, Ni Jweide PJ. Cell-cell interaction in the osteogenic compartment of bone[J]. Bone, 1988, 9(2):107-111.
[15] Vahabi S, Torshabi M, Mohammadi M. Osteoinductive activity of DFDBA materials versus growth factors on gene expression of MG-63 cells: an in vitro study [J]. J Long Term Eff Med Implants, 2016, 26(2):133-142.
[16] Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis [J]. Ann Intern Med, 2013, 158(12):890-902.
[17] Gothard D, Smith EL, Kanczler JM, et al. Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man [J]. Eur Cells Mater, 2014, 28: 166-208. discussion 207-8.
[18] Mesfin A, Buchowski JM, Zebala LP, et al. High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases [J]. J Bone Joint Surg Am, 2013, 95(17): 1546-1553.
[19] Qureshi OS, Zeb A, Akram M, et al. Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery [J]. Eur J Pharm Biopharm, 2016, 108: 187-195. doi: 10.1016/j.ejpb.2016.09.008. Epub 2016 Sep 12.
[20] Jiang L, Fei D, Gong R, et al. CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury [J]. Inflamm Res, 2016, 65(11): 905-915.
[21] Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, et al. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule [J]. Biochem Pharmacol, 2016, 102: 64-77. doi: 10.1016/j.bcp.2015.12.014. Epub 2015 Dec 22.
[22] Song H, Hoeger S, Hillebrands JL, et al. CORMs protect endothelial cells during cold preservation, resulting in inhibition of intimal hyperplasia after aorta transplantation in rats [J]. Transpl Int, 2010, 23(11): 1144-1153.
[23] 魏玲玲, 侯萌, 王苹, 等. 一氧化碳释放分子对大鼠实验性牙周炎的影响[J].华西口腔医学杂志, 2014, 32(1): 23-26. WEI Lingling, HOU Meng, WANG Ping, et al. Effect of carbon monoxide releasing molecule on experimental periodontitis in rats [J]. West China Journal of Stomatology, 2014, 32(1): 23-26.
[24] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts[J]. Cell, 1997, 89(5): 755-764.
[25] 赵华强, 侯萌, 魏玲玲, 等. 一氧化碳对炎症环境下人牙龈成纤维细胞黏附分子表达影响的机制研究[J]. 华西口腔医学杂志, 2013, 31(4): 420-424. ZHAO Huaqiang, HOU Meng, WEI Lingling, et al. Mechanism of carbon monoxide affecting the expression of cellular adhesion molecule under stimulation of inflammatory cytokines to human gingival fibroblasts [J]. West China Journal of Stomatology, 2013, 31(4): 420-424.
[1] 李珊珊,杨静,张瑾. 小鼠骨硬化蛋白的转录后调控机制[J]. 山东大学学报(医学版), 2017, 55(3): 43-48.
[2] 丁凤,董亚兵,赵华强,朱国雄,吴高义. 在慢性睡眠剥夺中骨桥蛋白通过NF-kappaB通路对颞下颌关节的影响[J]. 山东大学学报(医学版), 2016, 54(9): 41-47.
[3] 宋轲,刘寰,武文亮,刘海春,李尚志,陈允震. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54(6): 1-6.
[4] 付海燕, 胡占升, 杜红阳, 李潮, 包翠芬. 地黄多糖对过表达Notch1(NICD)大鼠骨髓间充质干细胞诱导分化及增殖的影响[J]. 山东大学学报(医学版), 2015, 53(1): 34-40.
[5] 高鹏, 沈方臻, 肖文静, 修元德, 周玲玲. IB期非小细胞肺癌Runx2、Ezrin表达与术后转移的相关性[J]. 山东大学学报(医学版), 2015, 53(1): 63-66.
[6] 牟乐明1,孙占胜1,王伯珉1,高平2,初向全3. 骨髓间充质干细胞移植对脊髓损伤大鼠Toll样受体4表达的影响[J]. 山东大学学报(医学版), 2014, 52(1): 37-41.
[7] 刘善文1,王福1, 李彬2,耿海华3,李彩娥4,许哲5,李睿1,肖洁1,张森1,季晓平1. 大鼠骨髓间充质干细胞exosome提取及其心肌细胞H9C2靶向作用的实验探索[J]. 山东大学学报(医学版), 2013, 51(9): 1-7.
[8] 胡苏1,2,逄曙光2,崔莹2,于春晓1,赵家军1,管庆波1. 链脲佐菌素诱导糖尿病大鼠骨髓间充质干细胞成骨分化[J]. 山东大学学报(医学版), 2013, 51(8): 7-12.
[9] 李勉贤,陈弹,李红霞. GATA-4基因增加骨髓间充质干细胞抗缺氧能力的探讨[J]. 山东大学学报(医学版), 2013, 51(7): 6-9.
[10] 杜红阳1,李东宁1,付海燕1,包翠芬2,秦书俭2. 地黄多糖诱导大鼠BMSCs向神经样细胞分化中对Notch信号通路的影响[J]. 山东大学学报(医学版), 2013, 51(12): 1-6.
[11] 禹化龙1,胡三元2. 骨桥蛋白在结直肠腺瘤—癌进程中的表达[J]. 山东大学学报(医学版), 2012, 50(11): 84-87.
[12] 张兆华1,王一彪1,栾云2,苏宏1,马宇1,林梅1,孙若鹏3 . 骨髓间充质干细胞移植治疗实验性大鼠肺动脉高压损伤的作用[J]. 山东大学学报(医学版), 2011, 49(8): 31-.
[13] 邢介龙,许运宾,张彦,徐长宪,孟国伟,李勇,鲍卫国. Y染色体追踪大鼠骨髓间充质干细胞心肌移植的实验研究[J]. 山东大学学报(医学版), 2011, 49(7): 74-.
[14] 孙慧环1,刘福强1,龚蕾1,肖芳1,侯新国1,孙宇1,宋君1,陈丽1,王旭平2. 骨髓间充质干细胞对INS-1细胞凋亡的影响[J]. 山东大学学报(医学版), 2011, 49(5): 6-.
[15] 王兴苗1,李孟圈1,王丽娟2,苏静1,胡荻1 . 乳腺浸润性导管癌中Caspase-3、OPN和Ezrin蛋白的表达及临床意义[J]. 山东大学学报(医学版), 2011, 49(4): 141-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!