Journal of Shandong University (Health Sciences) ›› 2026, Vol. 64 ›› Issue (2): 44-49.doi: 10.6040/j.issn.1671-7554.0.2024.0677

• Review • Previous Articles    

Research progress of antioxidant carbon dot nanozymes to regulate the neuro-regeneration microenvironment

YU Haozhi1, SHI Guidong1, XU Guopeng2, JIANG Yunpeng1, FENG Shiqing3, LIU Xinyu1, QI Lei1   

  1. 1. Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. School of Physics, Shandong University, Jinan 250100, Shandong, China;
    3. The Second Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2026-02-10

Abstract: Carbon dot, as an emerging zero-dimensional photoluminescent nanomaterial, has broad application prospects in biomedicine, sensors, and optoelectronic devices due to their simple preparation, easy regulation of optical properties, high photochemical stability, excellent photoelectric properties, low toxicity, and good biocompatibility. With the research deepening, a variety of carbon dots have been successively reported to exhibit excellent enzyme-like catalytic activity(carbon dot nanozymes), and can be used to regulate the pathological redox microenvironment for efficient disease treatment. To elucidate the unique advantages and potential prospects of carbon dot nanozymes in neuroscience, in this review, we firstly introduced the antioxidant capacity and the activity source of carbon dots, and then discussed the antimicrobial activity and their corresponding action mechanisms. Finally, we summarized the recent progress of antioxidant carbon-dot nanozymes in regulating the neuro-regeneration microenvironment, and further proposed the prospect of carbon dot-based modulation of pathological microenvironment for nerve regeneration.

Key words: Carbon dot nanozymes, Central nervous system, Microenvironment, Neuro-regeneration, Oxidative stress

CLC Number: 

  • R681.5
[1] Robert A, Meunier B. How to define a nanozyme[J]. ACS Nano, 2022, 16(5): 6956-6959.
[2] Zandieh M, Liu JW. Nanozyme catalytic turnover and self-limited reactions[J]. ACS Nano, 2021, 15(10): 15645-15655.
[3] Zhang YH, Liu WL, Wang XY, et al. Nanozyme-enabled treatment of cardio- and cerebrovascular diseases[J]. Small, 2023, 19(13): e2204809. doi:10.1002/smll.202204809
[4] Yu Y, Zeng QS, Tao SY, et al. Carbon dots based photoinduced reactions: advances and perspective[J]. Adv Sci, 2023, 10(12): e2207621. doi:10.1002/advs.202207621
[5] Yu Y, Zeng Q, Tao S, et al. Carbon dots based photo-induced reactions: advances and perspective[J]. Adv Sci(Weinh), 2023, 10(12): e2207621. doi:10.1002/advs.202207621
[6] Li JR, Gong X. The emerging development of multicolor carbon dots[J]. Small, 2022, 18(51): e2205099. doi:10.1002/smll.202205099
[7] Wareing TC, Gentile P, Phan AN. Biomass-based carbon dots: current development and future perspectives[J]. ACS Nano, 2021, 15(10): 15471-15501.
[8] Dong XL, Liang WX, Meziani MJ, et al. Carbon dots as potent antimicrobial agents[J]. Theranostics, 2020, 10(2): 671-686.
[9] Ajith MP, Pardhiya S, Rajamani P. Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation[J]. Small, 2022, 18(15): e2105579. doi:10.1002/smll.202105579
[10] Forrester SJ, Kikuchi DS, Hernandes MS, et al. Reactive oxygen species in metabolic and inflammatory signaling[J]. Circ Res, 2018, 122(6): 877-902.
[11] Ma YN, Zhao JJ, Cheng LL, et al. Versatile carbon dots with superoxide dismutase-like nanozyme activity and red fluorescence for inflammatory bowel disease therapeutics[J]. Carbon, 2023, 204: 526-537. doi:10.1016/j.carban.2023.01.006
[12] Kong B, Yang T, Cheng F, et al. Carbon dots as nanocatalytic medicine for anti-inflammation therapy[J]. J Colloid Interface Sci, 2022, 611: 545-553. doi:10.1016/j.jcis.2021.12.107
[13] Geng HG, Chen JY, Tu KS, et al. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis[J]. J Nanobiotechnology, 2023, 21(1): 500. doi:10.1186/s12951-023-02234-1
[14] Li H, Guo JQ, Liu AK, et al. Multi-functional carbon dots for visualizing and modulating ROS-induced mitophagy in living cells[J]. Adv Funct Materials, 2023, 33(17): 2212141. doi:10.1002/adfm.202212141
[15] Huang S, Song Y, Zhang JR, et al. Antibacterial carbon dots-based composites[J]. Small, 2023, 19(31): e2207385. doi:10.1002/smll.202207385
[16] Zhao WB, Liu KK, Wang Y, et al. Antibacterial carbon dots: mechanisms, design, and applications[J]. Adv Healthc Mater, 2023, 12(23): e2300324. doi:10.1002/adhm.202300324
[17] Walia SK, Shukla AK, Sharma C, et al. Engineered bright blue- and red-emitting carbon dots facilitate synchronous imaging and inhibition of bacterial and cancer cell progression via 1O2-mediated DNA damage under photoirradiation[J]. ACS Biomater Sci Eng, 2019, 5(4): 1987-2000.
[18] Wang PY, Song YZ, Mei Q, et al. Sliver nanoparticles@carbon dots for synergistic antibacterial activity[J]. Appl Surf Sci, 2022, 600: 154125. doi:10.1016/j.apsusc.2022.154125
[19] Xu GP, Ren ZY, Xu JC, et al. Organic-inorganic heterointerface-expediting electron transfer realizes efficient plasmonic catalytic sterilization via a carbon-dot nanozyme[J]. ACS Appl Mater Interfaces, 2024, 16(17): 21689-21698.
[20] Li JY, Ma JJ, Sun H, et al. Transformation of arginine into zero-dimensional nanomaterial endows the material with antibacterial and osteoinductive activity[J]. Sci Adv, 2023, 9(21): eadf8645. doi:10.1126/sciadv.adf8645
[21] Liu M, Huang L, Xu XY, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano, 2022, 16(6): 9479-9497.
[22] Kanwal A, Uzair B, Sajjad S, et al. Synthesis and characterization of carbon dots coated CaCO3 nanocarrier for levofloxacin against multidrug resistance extended-spectrum beta-lactamase Escherichia coli of urinary tract infection origin[J]. Microb Drug Resist, 2022, 28(1): 106-119.
[23] John TS, Yadav PK, Kumar D, et al. Highly fluorescent carbon dots from wheat bran as a novel drug delivery system for bacterial inhibition[J]. Luminescence, 2020, 35(6): 913-923.
[24] Li Q, Liu Y, Dai XL, et al. Nanozymes regulate redox homeostasis in ROS-related inflammation[J]. Front Chem, 2021, 9: 740607. doi:10.3389/fchem.2021.740607
[25] Jiang YP, Kang YY, Liu J, et al. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications[J]. J Nanobiotechnology, 2022, 20(1): 265. doi:10.1186/s12951-022-01434-5
[26] Yan BC, Cao JW, Liu JJ, et al. Dietary Fe3O4 nanozymes prevent the injury of neurons and blood-brain barrier integrity from cerebral ischemic stroke[J]. ACS Biomater Sci Eng, 2021, 7(1): 299-310.
[27] Jeong HG, Cha BG, Kang DW, et al. Ceria nanoparticles synthesized with aminocaproic acid for the treatment of subarachnoid hemorrhage[J]. Stroke, 2018, 49(12): 3030-3038.
[28] Bao QQ, Hu P, Xu YY, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles[J]. ACS Nano, 2018, 12(7): 6794-6805.
[29] Seven ES, Seven YB, Zhou YQ, et al. Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery[J]. Nanoscale Adv, 2021, 3(13): 3942-3953.
[30] Srivastava I, Moitra P, Fayyaz M, et al. Rational design of surface-state controlled multicolor cross-linked carbon dots with distinct photoluminescence and cellular uptake properties[J]. ACS Appl Mater Interfaces, 2021, 13(50): 59747-59760.
[31] Liu YH, Ma YF, Chen ML, et al. Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia[J]. Sci Total Environ, 2022, 844: 157201. doi:10.1016/j.scitotenv.2022.157201
[32] Joseph X, Akhil V, Arathi A, et al. Microfluidic synthesis of gelatin nanoparticles conjugated with nitrogen-doped carbon dots and associated cellular response on A549 cells[J]. Chem Biol Interact, 2022, 351: 109710. doi:10.1016/j.cbi.2021.109710
[33] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimers disease[J]. Lancet, 2021, 397(10284): 1577-1590.
[34] Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers[J]. Lancet Neurol, 2021, 20(3): 222-234.
[35] Kuang Y, Zhang JW, Xiong MG, et al. A novel nanosystem realizing curcumin delivery based on Fe3O4@Carbon dots nanocomposite for Alzheimers disease therapy[J]. Front Bioeng Biotechnol, 2020, 8: 614906. doi:10.3389/fbioe.2020.614906
[36] Kumar VB, Kumar R, Gedanken A, et al. Fluorescent metal-doped carbon dots for neuronal manipulations[J]. Ultrason Sonochem, 2019, 52: 205-213.
[37] Qi ZP, Pan S, Yang XY, et al. Injectable hydrogel loaded with CDs and FTY720 combined with neural stem cells for the treatment of spinal cord injury[J]. Int J Nanomedicine, 2024, 19: 4081-4101. doi:10.2147/IJN.S448962
[1] ZHAO Canbin, SHAO Jiang, GUAN Donghui, QIN Ying, DING Qiang, GUO Liang, WANG Weiwei, CHEN Wei, YAN Xiaolong, ZENG Ping. Mechanism of luteolin regulating Wnt/β-catenin signal pathway in inflammatory microenvironment to promote chondrogenic differentiation of bone marrow mesenchymal stem cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(7): 11-22.
[2] WANG Lei, CHANG Xiao, WANG Zimeng, LI Jiaojiao, CUI Shujun, YANG Fei, ZHU Yuexiang. Predictive value of intratumoral and peritumoral DCE-MRI imaging histology for progression-free survival in patients with cervical cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(6): 45-54.
[3] LI Xiang, ZHANG Yi, WANG Xuechun, XU Mengchao, WANG Yuelan. Research progress on oxidative stress in acute lung injury induced by traumatic brain injury [J]. Journal of Shandong University (Health Sciences), 2025, 63(2): 118-124.
[4] LIANG Yanchun, YAN Ying, MAI Huaxi, YAO Shuzhong. Therapeutic effect of dienogest in endometriosis-associated pain: from fundamental research to clinical practice [J]. Journal of Shandong University (Health Sciences), 2025, 63(10): 27-33.
[5] XU Ping, ZHANG Xinmei. Mechanisms of pain in endometriosis [J]. Journal of Shandong University (Health Sciences), 2025, 63(10): 1-7.
[6] SONG Yawen, GUO Liantao, KONG Deguang, SUN Shengrong. VTCN1 causes poor prognosis and endocrine therapy resistance in HR+ breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 43-59.
[7] WU Siyu, SHEN Yelong, WANG Ximing. Radiomics predicts Ki-67 labeling index in primary central nervous system lymphomas [J]. Journal of Shandong University (Health Sciences), 2024, 62(11): 67-72.
[8] HU Yanwen, ZHAO Huichen, MA Xiaoli, LIU Yuantao, ZHANG Yuchao. GLP-1 inhibits oxidative stress damage through cytochrome P450 surface oxidase pathway [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 10-16.
[9] YAN Congcong, CHEN Chen, XIE Qian, WANG Yanan, ZHANG Xinlu, ZHANG Yingchun, WU Bin. Effects of bisphenol A exposure on m6A modification level of KGN cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 17-23.
[10] LIU Yang, CHEN Guihai. Effects and mechanism of Hanjingtang on the oxidative stress induced by cold stimulation in aortic vascular smooth muscle cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 24-30.
[11] QI Shaojun, TANG Yanjin, ZHANG Zhengduo, WU Hong, ZHANG Jiacheng, QIN Chuan, LIU Rui, GAO Xibao. Protective effects of supplementing various trace elements on rats with high-sucrose diet [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 19-26.
[12] GUAN Wei, BAI Yunfeng, DU Shengjie, WANG Yuelan, LI Ximing. Effects of Dexmedetomidine on the gene expressions of SH-SY5Y cells by RNA high-throughput sequencing [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 27-33.
[13] CHANG Qing, LIU Jia, QU Ailin, YANG Yongmei. Association of NAMPT with pathological features and immune infiltration of hepatocellular carcinoma using database information [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 26-36.
[14] ZHANG Jiaying, SU Rongyun, WANG Yinghui, WANG Honggang, LIU Gang. ACE2 gene protects against renal ischemia-reperfusion injury by regulating the Nrf2/HO-1 signaling pathway [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 1-9.
[15] WU Hong, ZHANG Zhengduo, TANG Yanjin, QI Shaojun, GAO Xibao. Potential intervention effects of 5-methyltetrahydrofolate on atherosclerosis in rats [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 6-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!