Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (2): 118-124.doi: 10.6040/j.issn.1671-7554.0.2024.1140

• Review • Previous Articles    

Research progress on oxidative stress in acute lung injury induced by traumatic brain injury

LI Xiang, ZHANG Yi, WANG Xuechun, XU Mengchao, WANG Yuelan   

  1. Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
  • Online:2025-03-10 Published:2025-03-07

Abstract: Traumatic brain injury represents a significant global public health concern, with its associated acute lung injury gaining increased attention. The pathogenesis of acute lung injury induced by traumatic brain injury is complex, involving multiple factors and mechanisms. Effective management requires a comprehensive understanding of the interplay between traumatic brain injury and acute lung injury. This article summarizes recent advances in understanding how oxidative stress induces damage to the alveolar-capillary barrier, as well as its role in promoting pulmonary inflammation and exacerbating coagulation dysfunction in acute lung injury induced by traumatic brain injury. Additionally, it explores the potential therapeutic effects of agents such as dexmedetomidine, gastrin, polydatin, and enoxaparin, providing a foundation for future clinical strategies aimed at the prevention and treatment of acute lung injury induced by traumatic brain injury. These insights offer valuable theoretical guidance for clinicians in improving patient outcomes.

Key words: Traumatic brain injury, Acute lung injury, Oxidative stress, Alveolar-capillary barrier, Apoptosis

CLC Number: 

  • R563
[1] Cheng P, Yin P, Ning P, et al. Trends in traumatic brain injury mortality in China, 2006-2013: a population-based longitudinal study[J]. PLoS Med, 2017, 14(7): e1002332.
[2] Wang Y, Wang C, Zhang D, et al. Dexmedetomidine protects against traumatic brain injury-induced acute lung injury in mice[J]. Med Sci Monit, 2018, 24: 4961-4967. doi:10.12659/msm.908133.
[3] Cheng CY, Ho CH, Wang CC, et al. One-year mortality after traumatic brain injury in liver cirrhosis patients: a ten-year population-based study[J]. Medicine(Baltimore), 2015, 94(40): e1468.
[4] Skrifvars MB, Moore E, Mårtensson J, et al. Erythropoietin in traumatic brain injury associated acute kidney injury: a randomized controlled trial[J]. Acta Anaesthesiol Scand, 2019, 63(2): 200-207.
[5] 潘超. 中性粒细胞/淋巴细胞比值(NLR)与重型颅脑损伤继发肺部损伤的相关性研究[D]. 广州: 南方医科大学, 2020.
[6] Gu Z, Li L, Li Q, et al. Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation[J]. Int Immunopharmacol, 2021, 98: 107699. doi:10.1016/j.intimp.2021.107699.
[7] Singh A, Prajapati HP, Kumar R, et al. Prognostic role of catecholamine in moderate-to-severe traumatic brain injury: a prospective observational cohort study[J]. Asian J Neurosurg, 2022, 17(3): 435-441.
[8] Nin N, Ordonez R, Escudero R. Acute lung injury in trauma patients[J]. Curr Opin Crit Care, 2017, 23(6): 462-468.
[9] 朱钰珊,彭学容,范苏苏,等. 炎症与氧化应激在急性肺损伤中的作用研究进展[J]. 生物医学,2024, 14(1): 48-55. ZHU Yushan, PENG Xuerong, FAN Susu, et al. Research progress on the role of inflammation and oxidative stress in acute lung injury[J]. HJBM, 2024, 14(1): 48-55.
[10] Weber DJ, Gracon AS, Ripsch MS, et al. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation[J]. Sci Transl Med, 2014, 6(252): 252ra124.
[11] Kerr NA, de Rivero Vaccari JP, Umland O, et al. Human lung cell pyroptosis following traumatic brain injury[J]. Cells, 2019, 8(1): E69.
[12] Weaver LC, Bao F, Dekaban GA, et al. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats[J]. Exp Neurol, 2015, 271: 409-422. doi:10.1016/j.expneurol.2015.07.003.
[13] Yang SJ, Kim EA, Chang MJ, et al. N-adamantyl-4-methylthiazol-2-amine attenuates glutamate-induced oxidative stress and inflammation in the brain[J]. Neurotox Res, 2017, 32(1): 107-120.
[14] Jin W, Wu J, Wang H, et al. Erythropoietin administration modulates pulmonary Nrf2 signaling pathway after traumatic brain injury in mice[J]. J Trauma, 2011, 71(3): 680-686.
[15] Zhao Z, Zhou Y, Hilton T, et al. Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity[J]. Haematologica, 2020, 105(1): 209-217.
[16] Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: implications for neurocritical care patients[J]. World J Crit Care Med, 2015, 4(3): 163-178.
[17] Lotze MT, Tracey KJ. High-mobility group box 1 protein(HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5: 331-342. doi:10.1038/nri1594.
[18] Nicolls MR, Laubach VE. Traumatic brain injury: lungs in a RAGE[J]. Sci Transl Med, 2014, 6(252): 252fs34.
[19] Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481: 278-286. doi:10.1038/nature10759.
[20] Hoss F, Rodriguez-Alcazar JF, Latz E. Assembly and regulation of ASC specks[J]. Cell Mol Life Sci, 2017, 74(7): 1211-1229.
[21] Li YX, Huang H, Liu B, et al. Inflammasomes as therapeutic targets in human diseases[J]. Signal Transduct Target Ther, 2021, 6: 247. doi:10.1038/s41392-021-00650-z.
[22] Bai W, Zhu WL, Ning YL, et al. Dramatic increases in blood glutamate concentrations are closely related to traumatic brain injury-induced acute lung injury[J]. Sci Rep, 2017, 7: 5380. doi:10.1038/s41598-017-05574-9.
[23] Chamorro á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J]. Lancet Neurol, 2016, 15(8): 869-881.
[24] Said SI, Dey RD, Dickman K. Glutamate signalling in the lung[J]. Trends Pharmacol Sci, 2001, 22(7): 344-345.
[25] Collard CD, Park KA, Montalto MC, et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function[J]. J Biol Chem, 2002, 277(17): 14801-14811.
[26] Dickman KG, Youssef JG, Mathew SM, et al. Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity[J]. Am J Respir Cell Mol Biol, 2004, 30(2): 139-144.
[27] Shi Y, Liu T, Nieman DC, et al. Aerobic exercise attenuates acute lung injury through NET inhibition[J]. Front Immunol, 2020, 11: 409. doi:10.3389/fimmu.2020.00409.
[28] Pedrazza L, Cunha AA, Luft C, et al. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation[J]. J Cell Physiol, 2017, 232(12): 3552-3564.
[29] Harhangi BS, Kompanje EJO, Leebeek FWG, et al. Coagulation disorders after traumatic brain injury[J]. Acta Neurochir, 2008, 150(2): 165-175.
[30] Stein SC, Smith DH. Coagulopathy in traumatic brain injury[J]. Neurocrit Care, 2004, 1(4): 479-488.
[31] Zhao Z, Wang M, Tian Y, et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice[J]. Blood, 2016, 127(22): 2763-2772.
[32] Honda Y, Kamisato C, Morishima Y. Edoxaban, a direct factor Xa inhibitor, suppresses tissue-factor induced human platelet aggregation and clot-bound factor Xa in vitro: comparison with an antithrombin-dependent factor Xa inhibitor, fondaparinux[J]. Thromb Res, 2016, 141: 17-21. doi:10.1016/j.thromres.2016.02.028.
[33] Jiang L, Li L, Shen J, et al. Effect of dexmedetomidine on lung ischemia-reperfusion injury[J]. Mol Med Rep, 2014, 9(2): 419-426.
[34] Meng L, Li L, Lu S, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways[J]. Mol Immunol, 2018, 94: 7-17. doi:10.1016/j.molimm.2017.12.008.
[35] Jiang YX, Xia MZ, Xu J, et al. Dexmedetomidine alleviates pulmonary edema through the epithelial sodium channel(ENaC)via the PI3K/Akt/Nedd4-2 pathway in LPS-induced acute lung injury[J]. Immunol Res, 2021, 69(2): 162-175.
[36] 赵谦,杨剑. 右美托咪定调控细胞凋亡和焦亡在中枢神经保护作用中的机制研究进展 [J]. 中国医药, 2022, 17(5): 789-792. ZHAO Qian, YANG Jian. Advances in the mechanism of dexmedetomidine regulating cell apoptosis and pyroptosis in central nervous system protection [J]. China Medicine, 2022, 17(5): 789-792.
[37] 袁小林,邹婷婷,周楠,等. 右美托咪定在脑出血大鼠模型中的神经保护作用及可能机制 [J]. 解剖科学进展, 2023, 29(2): 161-164. YUAN Xiaolin, ZOU Tingting, ZHOU Nan, et al. Neuroprotective effects and possible mechanisms of dexmedetomidine in a rat model of intracerebral hemorrhage [J]. Prog Anat Sci, 2023, 29(2): 161-164.
[38] Zeng Z, Chen Z, Li T, et al. Polydatin: a new therapeutic agent against multiorgan dysfunction[J]. J Surg Res, 2015, 198(1): 192-199.
[39] Shao XF, Li B, Shen J, et al. Ghrelin alleviates traumatic brain injury-induced acute lung injury through pyroptosis/NF-κB pathway[J]. Int Immunopharmacol, 2020, 79: 106175. doi:10.1016/j.intimp.2019.106175.
[40] Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury[J]. Int J Mol Sci, 2019, 20(4): E831.
[41] Li Y, Wu B, Hu C, et al. The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats[J]. Eur J Pharmacol, 2022, 914: 174668. doi:10.1016/j.ejphar.2021.174668.
[42] Hu Y, Lou J, Mao YY, et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury[J]. Autophagy, 2016, 12(12): 2286-2299.
[43] Xu X, Zhi T, Chao H, et al. ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic brain injury-induced acute lung injury[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1663-1674.
[44] Kerr NA, de Rivero Vaccari JP, Weaver C, et al. Enoxaparin attenuates acute lung injury and inflammasome activation after traumatic brain injury[J]. J Neurotrauma, 2021, 38(5): 646-654.
[45] Zhang CN, Li FJ, Zhao ZL, et al. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(5): L885-L891.
[46] 汤睿,周敏. 机械通气对急性颅脑损伤患者肺脑保护作用的研究进展[J]. 中华危重病急救医学,2020, 32(12): 1533-1536.
[1] LU Xiang-Dong, YANG Wei, XU Guang-Meng, QU Yuan-Ming. Expression and role of PPAR-γin meningiomas and troglitazone induced meningiomas cell apoptosis in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 65-.
[2] ZHANG Jie, ZHANG Fangfang, WANG Jingnan, LI Zeyu, SONG Ying, LI Na. Expression of circ_0000144 in breast cancer and its effect on the proliferation, migration and invasion ability of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 35-42.
[3] DU Xueshi, NI Xiangmin, LIANG Xinyu, BAI Qian, ZHU Wenyi, WANG Jian. The protect effect of equol and its potential targets in the context of diabetic nephropathy [J]. Journal of Shandong University (Health Sciences), 2024, 62(8): 49-58.
[4] JIANG Zihan, LU Xingchen, SUN Lu, ZHAO Huichen, ZUO Dan, MA Xiaoli, LIU Yuantao, ZHANG Yuchao. Mechanism of NR4A1 regulating hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells via the IκBα/NF-κB pathway [J]. Journal of Shandong University (Health Sciences), 2024, 62(3): 11-19.
[5] GAO Yujie, LONG Qifu, HU Ying, XU Yuzhen, WANG Ru, YONG Sheng. Bioinformatics identification of the Hub genes and mechanism of hypoxia-induced mitochondrial damage in mouse kidney [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 57-68.
[6] CAO Hualin, JIA Yanzhao, QU Li, YIN Xin. Impacts of CircFAT1 on the proliferation, apoptosis and radiosensitivity of nasopharyngeal carcinoma cells by regulating miR-296-3p/MAPRE1 axis [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 38-46.
[7] LIU Jinbo, LIU Kaiwen, XIANG Chongxin, CHENG Lei. Protective effects of crocin on intervertebral disc degeneration [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 84-93.
[8] HU Yanwen, ZHAO Huichen, MA Xiaoli, LIU Yuantao, ZHANG Yuchao. GLP-1 inhibits oxidative stress damage through cytochrome P450 surface oxidase pathway [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 10-16.
[9] YAN Congcong, CHEN Chen, XIE Qian, WANG Yanan, ZHANG Xinlu, ZHANG Yingchun, WU Bin. Effects of bisphenol A exposure on m6A modification level of KGN cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 17-23.
[10] LIU Yang, CHEN Guihai. Effects and mechanism of Hanjingtang on the oxidative stress induced by cold stimulation in aortic vascular smooth muscle cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 24-30.
[11] QI Shaojun, TANG Yanjin, ZHANG Zhengduo, WU Hong, ZHANG Jiacheng, QIN Chuan, LIU Rui, GAO Xibao. Protective effects of supplementing various trace elements on rats with high-sucrose diet [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 19-26.
[12] ZHANG Jiaying, SU Rongyun, WANG Yinghui, WANG Honggang, LIU Gang. ACE2 gene protects against renal ischemia-reperfusion injury by regulating the Nrf2/HO-1 signaling pathway [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 1-9.
[13] YANG Yuanfeng, XIONG Gaocai, LI Yuchuan, LUO Yuling, ZHANG Jingjie. Effects of Luling Anshen Granule on the inflammatory response and cell apoptosis in rats with chronic renal failure [J]. Journal of Shandong University (Health Sciences), 2023, 61(10): 9-16.
[14] ZHAO Kai, YIN Xinbao, ZHANG Zongliang, WANG Zhenlin, ZHU Guanqun, WANG Ke. Inhibitory effect and mechanism of astragaloside Ⅱ on renal clear cell carcinoma cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 10-16.
[15] ZHAO Ge, ZOU Cunhua, SONG Dongdong, ZHAO Shuping. Effects of tanshinone IIA on the proliferation and apoptosis of endometrial carcinoma cells [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 53-58.
Viewed
Full text
28
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 28

  From local
  Times 28
  Rate 100%

Abstract
70
Just accepted Online first Issue
0 0 70
  From Others local
  Times 69 1
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!