Journal of Shandong University (Health Sciences) ›› 2022, Vol. 60 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-7554.0.2021.1359
LIU Yan, ZHANG Man, JIANG Chaoyang, BIAN Shu, DU Aijia, CHEN He
CLC Number:
[1] Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment [J]. Arch Pharm Res, 2017, 40(11): 1219-1237. [2] Yan Q, Sun L, Zhu Z, et al. Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages [J]. Cellular Signalling, 2014, 26(9): 1783-1791. [3] 王深明, 吴伟滨. 重视动脉粥样硬化相关发病机制的研究[J]. 中华血管外科杂志, 2017, 2(4): 197-200. [4] Tabas Ira, García-Cardeña Guillermo, Owens Gary K. Recent insights into the cellular biology of atherosclerosis [J]. The Journal of cell biology, 2015, 209(1): 13-22. [5] Zawadzka M, Jagodzifiski PP. Exercise-induced epigenetic regulations in inflammatory related cells [J]. J Appl Biomed, 2016, 15(1): 63-70. [6] Xu S, Pelisek J, Jin ZG. Atherosclerosis is an epigenetic disease [J]. Trends Endocrinol Metab, 2018, 29(11): 739-742. [7] Nicorescu I, Dallinga GM, Winther M, et al. Potential epigenetic therapeutics for atherosclerosis treatment [J]. Atherosclerosis, 2019, 281(12): 189-197. [8] McCabe, Michael T, Mohammad, et al. Targeting histone methylation in cancer [J]. Cancer Journal, 2017, 23(5): 292. [9] Zhao Z, Su Z, Liang P, et al. USP38 couples histone ubiquitination and methylation via KDM5B to resolve inflammation [J]. Advanced Science, 2020, 7(22): 2002680. [10] Jiang W, Devendra A, Chandra B. Cell specific histone modifications in atherosclerosis(Review)[J]. Molecular Medicine Reports, 2018, 18(2): 1215-1224. [11] Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori [J]. Clinical Epigenetics, 2019, 11(1): 191. [12] Senmatsu S, Hirota K. Roles of lncRNA transcription as a novel regulator of chromosomal function [J]. Genes Genet Syst, 2021, 95(5): 213-223. [13] Guo C. Gene regulation by long non-coding RNAs and its biological functions [J]. Nature Reviews Molecular Cell Biology, 2020, 22(2): 96-118. [14] Zhang L, Cheng H, Yue Y, et al. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1 [J]. Cardiovasc Pathol, 2018, 33: 6-15. doi: 10.1016/j.carpath.2017.11.004. [15] Momtazmanesh S, Rezaei N. Long non-coding RNAs in diagnosis, treatment, prognosis, and progression of glioma: a State-of-the-Art Review [J]. Front Oncol, 2021, 11: 712786. doi: 10.3389/fonc.2021.712786. [16] 范方田, 沈存思, 裴昌松, 等. 肿瘤转移新靶点HOTAIR的研究进展[J]. 肿瘤, 2012, 32(10): 842-846. FAN Fangtian, SHEN Cunsi, PEI Changsong, et al. Review of a new tumor metastatic target HOTAIR [J]. Tumor, 2012, 32(10): 842-846. [17] Yuan S, Zhang C, Zhu Y, et al. Neohesperid in ameliorates steroid induced osteonecrosis of the femoral head by inhibiting the histone modification of lncRNA HOTAIR [J]. Drug Des Devel Ther, 2020, 7(14): 5419-5430. [18] Xu S, Kamato D, Little PJ, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics [J]. Pharmacol Ther, 2019, 196: 15-43. doi: 10.1016/j.pharmthera.2018.11.003. [19] Poznyak AV, Nikiforov NG, Markin AM, et al. Overview of oxLDL and Its impact on cardiovascular health: focus on atherosclerosis [J]. Front Pharmacol, 2020, 11: 613780. doi: 10.3389/fphar.2020.613780. [20] Lamb FS, Choi H, Miller MR, et al. TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis [J]. Am J Hypertens, 2020, 33(10): 902-913. [21] Xue Y, Guo Y, Luo S, et al. Aberrantly methylated-differentially expressed genes identify novel atherosclerosis risk subtypes [J]. Front Genet, 2020, 11: 569572. doi: 10.3389/fgene.2020.569572. [22] Zaret KS. Pioneer transcription factors initiating gene network changes [J]. A Annu Rev Genet, 2020, 54(1): 367-385. [23] Peng Z, Wu X, Li G, et al. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: a systematic review and meta-analysis [J]. Medicine, 2017, 96(14): e6569. [24] Hyun K, Jeon J, Park K, et al. Writing, erasing and reading histone lysine methylations [J]. Exp Mol Med, 2017, 49(4): e324. [25] Alam H, Gu B, Min GL. Histone methylation modifiers in cellular signaling pathways [J]. Cell Mol Life Sci, 2015, 72(23): 4577-4592. [26] Bekkering S, Quintin J, Joosten L, et al. Oxidized low density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes significance [J]. Arterioscler Thromb Vasc Biol, 2014, 34(8): 1731-1738. [27] Wierda RJ, Rietveld IM, Eggermond MV, et al. Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques [J]. Life Sciences, 2015, 129: 3-9. doi: 10.1016/j.lfs.2014.10.010. [28] 易欣, 蒋学俊, 周易. 组蛋白甲基化修饰在动脉粥样硬化发生发展中的研究进展[J].中国心血管病研究, 2018, 16(8): 676-679. [29] Zheng QF, Wang HM, Wang ZF, et al. Reprogramming of histone methylation controls the differentiation of monocytes into macrophages [J]. 2017, 284(9): 1309-1323. [30] Xia M, Yao L, Zhang Q, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3 [J]. Oncotarget, 2017, 8(12): 19795-19802. [31] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature, 2010, 464(7291): 1071-1076. [32] Fang S, Shen Y, Chen B, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR [J]. Ann Transl Med, 2018, 6(22): 440. [33] Pang JL, Wang JW, Hu PY, et al. HOTAIR alleviates ox-LDL-induced inflammatory response in Raw264.7 cells via inhibiting NF-κB pathway [J]. Eur Rev Med Pharmacol Sci, 2018, 22(20): 6991-6998. [34] Peng Y, Kai M, Jiang L, et al. Thymic stromal lymphopoietin induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis [J]. Bioscience Reports, 2017, 37(4): BSR20170351. [35] 卞姝, 张曼, 刘岩, 等. 环脂蛋白20调控组蛋白H2B泛素化经NF-κB信号通路对巨噬细胞迁移的影响[J]. 山东医药, 2022, 62(10): 60-63. BIAN Shu, ZHANG Man, LIU Yan, et al. Effect of cyclic finger protein 20 regulating histone H2B ubiquitination on macrophage migration through NF-κB pathway[J]. Shandong Medical Journal, 2022, 62(10): 60-63. [36] Esteller M. Epigenetics in cancer [J]. Carcinogenesis, 2010, 31(1): 27-36. |
[1] | HAO Yue-Wei, LIU Xue-Ping, ZHAO Ting-Ting, ZHENG Min, WANG Yi-Bing. Relationship between the COX-2 gene polymorphisms and atherothrombotic ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 95-98. |
[2] | XU Ning-Yu, WANG Lei, HAO En-Kui, SU Guo-Hai. Effects of atorvastatin given before acute PCI on inflammatory mediators and left ventricular function in STEMI [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 69-72. |
[3] | ZHANG Xiufang, LI Peizheng, ZHANG Bohan, SUN Congcong, LIU Yiming. Protective effect and mechanism of growth differentiation factor-15 in LPS-induced models of Parkinsons disease [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 1-7. |
[4] | SONG Luoqing, ZHOU Guoyu, YE Xiang, LU Mei, ZHAO Xinjing. A case report of misdiagnosed cerebral amyloid angiopathy-related inflammation and literature review [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 119-122. |
[5] | LI Hui, JIANG Chaoyang, LIU Yan, ZHANG Man. Effects and mechanism of histone deacetylase SIRT1 controlled macrophage apoptosis induced by oxidized low density lipoprotein [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 6-12. |
[6] | Zhaoying ZHANG,Chunhong MA. Immunomodulatory effects of bile acid in hepatointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 30-36. |
[7] | Xi ZHOU,Muhan HUANG,Yujie REN,Yang QIU. SARS-CoV-2 infection, innate immunity and inflammatory response [J]. Journal of Shandong University (Health Sciences), 2021, 59(5): 15-21. |
[8] | YANG Zhen, ZHANG Yanmin, WANG Qianqian, CHEN Huimin, FENG Qiang, ZHOU Shaoying. Correlations of microRNA-103 and microRNA-107 expressions with the clinical characteristics and prognosis of 120 cases of sepsis [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 77-85. |
[9] | LI Hongzhi, LIU Jing, SONG Yan, CHI Lingyi, LIU Yuguang. Role of liraglutide in the repair of spinal cord injury [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(4): 1-5. |
[10] | SUN Pengfei, MENG Xiao, ZHANG Kai, LI Li. The effect of resistin-like molecule β on the vulnerability of atherosclerotic plaques in ApoE-/- mice [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(3): 1-4. |
[11] | YUAN Bing, LI Ranran, HAN Mingyong. Primary tumor regulates the pulmonary microenvironment in melanoma carcinoma model and facilitates lung metastasis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(11): 13-18. |
[12] | CEN Zhihong, GUO Yujie, WU Weifeng, LI Liping, ZHOU Qiuxi. Changes of regulatory B cells in mice with viral myocarditis induced by Coxsackie virus [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(5): 31-35. |
[13] | LIU Yang, WANG Huanliang, LIU Yayang, YAN Hongdan, SUN Baozhu, HUANG Shanshan, HUANG Rui, LEI Weifu. Effects of lidocaine on caspase-1 and IL-1β lipopolysaccharide-induced mice macrophages [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(12): 43-46,56. |
[14] | HAO Fengcheng1,2, SU Zhonghua1,3. Protective effect of autophagy on the inflammation induced by ox-LDL [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(4): 30-34. |
[15] | QU Jing1, ZHAO Aiping1, DING Botong2, CHEN Yun1, CHANG Yali1, GUO Nongjian1. CD40L expressed on activated platelets attained in vivo and its effects on expression of inflammatory cytokines in endothelial cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(3): 75-78. |
|