Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (9): 117-123.doi: 10.6040/j.issn.1671-7554.0.2021.0956
Previous Articles Next Articles
HA Chunfang1,2, LI Ruyue3
CLC Number:
| [1] Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 41: 3-14. doi: 10.1016/j.bpobgyn.2016.08.006. [2] Kalayda GV, Wagner CH, Jaehde U. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells [J]. J Inorg Biochem, 2012, 116: 1-10. doi: 10.1016/j.jinorgbio.2012.07.010. [3] Jandial DA, Brady WE, Howell SB, et al. A phase I pharmacokinetic study of intraperitoneal bortezomib and carboplatin in patients with persistent or recurrent ovarian cancer: an NRG Oncology/Gynecologic Oncology Group study [J]. Gynecol Oncol, 2017, 145(2): 236-242. [4] Lancaster CS, Sprowl JA, Walker AL, et al. Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics [J]. Mol Cancer Ther, 2013, 12(8): 1537-1544. [5] Svoboda M, Wlcek K, Taferner B, et al. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: relevance for paclitaxel transport [J]. Biomed Pharmacother, 2011, 65(6): 417-426. [6] Tong X, Zhao J, Zhang Y, et al. Expression levels of MRP1, GST-π, and GSK3β in ovarian cancer and the relationship with drug resistance and prognosis of patients [J]. Oncol Lett, 2019, 18(1): 22-28. [7] Guo W, Dong W, Li M, et al. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells [J]. Onco Targets Ther, 2019, 12: 3881-3891. doi: 10.2147/OTT.S193433. [8] Gao B, Yang F, Chen W, et al. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer [J]. Oncol Lett, 2019, 18(4): 4262-4269. [9] Zhao MD, Li JQ, Chen FY, et al. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer [J]. Int J Nanomedicine, 2019, 14: 9453-9467. doi: 10.2147/IJN.S224579. [10] Dobiasová S, Reho rová K, Ku cerová D, et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential [J]. Antioxidants(Basel), 2020, 9(5): 455. doi: 10.3390/antiox9050455. [11] Kawahara B, Ramadoss S, Chaudhuri G, et al. Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein [J]. J Inorg Biochem, 2019, 191: 29-39. doi: 10.1016/j.jinorgbio.2018.11.003. [12] DeLoia JA, Zamboni WC, Jones JM, et al. Expression and activity of taxane-metabolizing enzymes in ovarian tumors [J]. Gynecol Oncol, 2008, 108(2): 355-360. [13] van Eijk M, Boosman RJ, Schinkel AH, et al. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes [J]. Cancer Chemother Pharmacol, 2019, 84(3): 487-499. [14] Yuan J, Lan H, Jiang X, et al. Bcl2 family: novel insight into individualized therapy for ovarian cancer(Review)[J]. Int J Mol Med, 2020, 46(4): 1255-1265. [15] Zhang Y, Huang F, Luo Q, et al. Inhibition of XIAP increases carboplatin sensitivity in ovarian cancer [J]. Onco Targets Ther, 2018, 11: 8751-8759. doi: 10.2147/OTT.S171053. [16] Li RH, Yue C, Wei BB, et al. [In vivo study of siRNA silencing XIAP gene to reverse taxol-resistance in human ovarian cancer cells] [J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2020, 51(3): 320-324. [17] Usman RM, Razzaq F, Akbar A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance [J]. Asia Pac J Clin Oncol, 2021, 17(3): 193-208. [18] Luan W, Pang Y, Li R, et al. Akt/mTOR-mediated autophagy confers resistance to BET inhibitor JQ1 in ovarian cancer [J]. Onco Targets The, 2019, 12: 8063-8074. doi: 10.2147/OTT.S220267. [19] Tan WX, Xu TM, Zhou ZL, et al. TRP14 promotes resistance to cisplatin by inducing autophagy in ovarian cancer [J]. Oncol Rep, 2019, 42(4): 1343-1354. [20] Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells [J]. J Biol Chem, 2014, 289(24): 17163-17173. [21] Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions [J]. Cancer Discov, 2019, 9(9): 1167-1181. [22] Dar S, Chhina J, Mert I, et al. Bioenergetic adaptations in chemoresistant ovarian cancer cells [J]. Sci Rep, 2017, 7(1): 8760. doi: 10.1038/s41598-017-09206-0. [23] Han CY, Patten DA, Lee SG, et al. p53 Promotes chemoresponsiveness by regulating hexokinase II gene transcription and metabolic reprogramming in epithelial ovarian cancer [J]. Mol Carcinog, 2019, 58(11): 2161-2174. [24] Bauerschlag DO, Maass N, Leonhardt P, et al. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer [J]. J Transl Med, 2015, 13: 146. doi: 10.1186/s12967-015-0511-3. [25] Papaevangelou E, Almeida GS, Box C, et al. The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model [J]. Int J Cancer, 2018, 143(4): 992-1002. [26] Criscuolo D, Avolio R, Calice G, et al. Cholesterol homeostasis modulates platinum sensitivity in human ovarian cancer [J]. Cells, 2020, 9(4): 828. doi: 10.3390/cells9040828. [27] Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics [J]. Cell Death Dis, 2013, 4(3): e532. doi: 10.1038/cddis.2013.60. [28] Hudson CD, Savadelis A, Nagaraj AB, et al. Altered glutamine metabolism in platinum resistant ovarian cancer [J]. Oncotarget, 2016, 7(27): 41637-41649. [29] Masamha CP, LaFontaine P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy [J]. J Cell Biochem, 2018,119(7): 6136-6145. [30] Schärer OD. Nucleotide excision repair in eukaryotes [J]. Cold Spring Harb Perspect Biol, 2013, 5(10): a012609. doi: 10.1101/cshperspect.a012609. [31] Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer [J]. Biomed Res Int, 2014, 2014: 150845. doi: 10.1155/2014/150845. [32] Guo J, Jin D, Wu Y, et al. Retraction notice to ‘The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells’ [EBioMedicine 35(2018)204-221] [J]. EBioMedicine, 2021, 63: 103168. doi: 10.1016/j.ebiom.2020.103168. [33] Bogush TA, Popova AS, Dudko EA, et al. ERCC1 as a marker of ovarian cancer resistance to platinum drugs[J]. Antibiot Khimioter, 2015, 60(3-4): 42-50. [34] Stefansson OA, Villanueva A, Vidal A, et al. BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer [J]. Epigenetics, 2012, 7(11): 1225-1229. [35] Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer [J]. Nature, 2015, 521(7553): 489-494. [36] Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA repair in ovarian cancer treatment resistance [J]. Clin Oncol(R Coll Radiol), 2020, 32(8): 518-526. [37] Ali MW, Cacan E, Liu Y, et al. Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10(RGS10)gene in ovarian cancer cells [J]. PLoS One, 2013, 8(3): e60185. doi: 10.1371/journal.pone.0060185. [38] Zeller C, Brown R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer [J]. Ther Adv Med Oncol, 2010, 2(5): 319-329. [39] Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: promise and progress [J]. Clin Epigenetics, 2019, 11(1): 7. doi: 10.1186/s13148-018-0602-0. [40] Mo L, Pospichalova V, Huang Z, et al. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells [J]. PLoS One, 201, 10(7): e0131579. doi: 10.1371/journal.pone.0131579. [41] Tang J, Zhu J, Ye Y, et al. Inhibition LC3B can increase chemosensitivity of ovarian cancer cells [J]. Cancer Cell Int, 2019, 19: 199. doi: 10.1186/s12935-019-0921-z. [42] Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer [J]. Cells, 2020, 9(5): 1299. doi: 10.3390/cells9051299. [43] Zhang F, Cui JY, Gao HF, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis [J]. Future Oncol, 2020, 16(32): 2619-2633. [44] Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer [J]. Cells, 2020, 9(6): 1402. doi: 10.3390/cells9061402. [45] Pieterse Z, Amaya-Padilla MA, Singomat T, et al. Ovarian cancer stem cells and their role in drug resistance [J]. Int J Biochem Cell Biol, 2019, 106: 117-126. doi: 10.1016/j.biocel.2018.11.012. [46] Mihanfar A, Aghazadeh Attari J, Mohebbi I, et al. Ovarian cancer stem cell: a potential therapeutic target for overcoming multidrug resistance [J]. J Cell Physiol, 2019, 234(4): 3238-3253. [47] Keyvani V, Farshchian M, Esmaeili SA, et al. Ovarian cancer stem cells and targeted therapy [J]. J Ovarian Res, 2019, 12(1): 120. doi: 10.1186/s13048-019-0588-z. |
| [1] | GE Li-Juan, JIN Rui-Feng, WANG Ji-Wen, HU Xin-Sheng, LIKun. Association between the C1236T polymorphism in multi-drug resistance gene 1 and response to antiepileptic drug treatment in epileptic patients [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 99-102. |
| [2] | YUAN Baowen, WANG Pei, HUANG Wei. Regulatory role of histone deacetylase SIRT1 in pancreatic cancer metabolism [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 1-12. |
| [3] | LI Yan, LIU Jing, LI Juan, YANG Qiuhong. Clinical characteristics and placental pathology of bloodstream infection in 50 pregnant women [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 48-54. |
| [4] | JU Jianhua, YANG Zhenye, LI Qinglian, HAN Yanan, LI Yanqing, QIAO Yijun, YANG Hu, ZHANG Huaran. Advances on drugs derived from microbial sources and future perspectives [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 43-50. |
| [5] | GUO Man, LIU Peng, LONG Lin. Effect of Fangxian Decoction on rats with radiation pneumonia and its mechanism [J]. Journal of Shandong University (Health Sciences), 2021, 59(8): 53-60. |
| [6] | XU Bing, LI Yong, LIU Ming, LIU Yonghui. Silencing PRRX1 gene expression enhances the sensitivity of prostate cancer resistant cell line PC-3/DTX to docetaxel [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 103-110. |
| [7] | WANG Zhengyang, XIA Yan, SHI Kaixuan, TAO Kun, WANG Xiaojie. Effects of Trametinib on PAX8 expression in ovarian cancer [J]. Journal of Shandong University (Health Sciences), 2021, 59(10): 23-29. |
| [8] | JIANG Xiaofeng, YAO Jingjing, ZHU Dawei, HE Ping, SHI Xuefeng, MENG Qingyue. Influence of compensation mechanism reform on the hospitalization expenses of a county-level public hospital in Shandong Province [J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 95-102. |
| [9] | FU Zhenmei, MA Mingze. Expression of P-glycoprotein in the colonic mucosa of ulcerative colitis patients and its clinical significance [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 54-59. |
| [10] | WANG Baojin, ZHAO Xinxin, LI Xia, MA Qian, WANG Xinyue, SUN Yang, SHI Zhongna. miR-203 targeting Survivin to inhibit the proliferation, migration and invasion of ovarian cancer cells [J]. Journal of Shandong University (Health Sciences), 2020, 58(12): 23-28. |
| [11] | ZHANG Ning, YANG Yan, LI Rui, YIN Yunhong, LI Hao, QU Yiqing. Analysis of risk factors and drug resistance of Acinetobacter baumannii in patients with chronic obstructive pulmonary disease [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 88-96. |
| [12] | GAO Yuan, JI Wei, XIAO Dan, LIU Jing, PENG Danbing, JI Chun. Mechanism of anti-inflammatory effect for Astragali Complanati Semen based on network pharmacology [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 59-68. |
| [13] | ZHANG Lu, XU Minxuan, YANG Xiaoxue, JIA Liying. An analysis of income compensation of public hospitals based on a quasi-experimental design ——a case study of a first-class hospital in Shandong Province [J]. Journal of Shandong University (Health Sciences), 2019, 57(3): 109-114. |
| [14] | WANG Shixuan, ZHANG Jinjin. Advances in the mechanisms research and preventive measures of ovarian aging [J]. Journal of Shandong University (Health Sciences), 2019, 57(2): 16-22. |
| [15] | GUAN Hongwei, LI Juan, SUN Rui, LIU Jie, LI Changzhong. Biological effects of ubenimex on ovarian cancer A2780 cell [J]. Journal of Shandong University (Health Sciences), 2019, 57(12): 46-51. |
|