Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (11): 1-10.doi: 10.6040/j.issn.1671-7554.0.2020.1181
• Special topic on new progress in ophthalmic artificial intelligence • Next Articles
Mingguang HE1,*(),Chi LIU1,2,Zhixi LI1
CLC Number:
1 |
McCarthy J , Minsky M , Rochester N , et al. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955[J]. AI Magazine, 2006, 27 (4): 12- 14.
doi: 10.1609/aimag.v27i4.1904 |
2 |
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521: 436- 444.
doi: 10.1038/nature14539 |
3 |
Wang J , Ding H , Bidgoli FA , et al. Detecting cardiovascular disease from mammograms with deep learning[J]. IEEE transactions on medical imaging, 2017, 36 (5): 1172- 1181.
doi: 10.1109/TMI.2017.2655486 |
4 | Sarraf S, Tofighi G. Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data[C]//2016 Future Technologies Conference (FTC). December 6-7, 2016, San Francisco, CA, USA. IEEE, 2016: 816-820. doi: 10.1109/FTC.2016.7821697. |
5 |
Zech JR , Badgeley MA , Liu M , et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study[J]. PLoS Medicine, 2018, 15 (11): e1002683.
doi: 10.1371/journal.pmed.1002683 |
6 |
Coudray N , Ocampo PS , Sakellaropoulos T , et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nature Medicine, 2018, 24 (10): 1559- 1567.
doi: 10.1038/s41591-018-0177-5 |
7 |
O'Neill EC , Gurria LU , Pandav SS , et al. Glaucomatous optic neuropathy evaluation project: factors associated with underestimation of glaucoma likelihood[J]. JAMA Ophthalmol, 2014, 132 (5): 560- 566.
doi: 10.1001/jamaophthalmol.2014.96 |
8 | Kong YX , Coote MA , O'Neill EC , et al. Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination[J]. Clin ExpOphthalmol, 2011, 39 (4): 308- 317. |
9 |
Sundling V , Gulbrandsen P , Straand J . Sensitivity and specificity of Norwegian optometrists' evaluation of diabetic retinopathy in single-field retinal images-a cross-sectional experimental study[J]. BMC Health Services Research, 2013, 13: 17.
doi: 10.1186/1472-6963-13-17 |
10 |
Abramoff MD , Lou Y , Erginay A , et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Invest Ophthalmol Vis Sci, 2016, 57 (13): 5200- 5206.
doi: 10.1167/iovs.16-19964 |
11 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
12 |
Ting D , Cheung CY , Lim G , et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318 (22): 2211- 2223.
doi: 10.1001/jama.2017.18152 |
13 |
Tufail A , Rudisill C , Egan C , et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders[J]. Ophthalmol, 2017, 124 (3): 343- 351.
doi: 10.1016/j.ophtha.2016.11.014 |
14 |
Abramoff MD , Lavin PT , Birch M , et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digital Medicine, 2018, 1: 39.
doi: 10.1038/s41746-018-0040-6 |
15 |
Li Z , Keel S , Liu C , et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes Care, 2018, 41 (12): 2509- 2516.
doi: 10.2337/dc18-0147 |
16 | Verbraak FD , Abramoff MD , Bausch GCF , et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting[J]. Diabetes Care, 2019, 42 (4): 651- 656. |
17 |
Li Z , He Y , Keel S , et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmol, 2018, 125 (8): 1199- 1206.
doi: 10.1016/j.ophtha.2018.01.023 |
18 |
Phene S , Dunn RC , Hammel N , et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs[J]. Ophthalmol, 2019, 126 (12): 1627- 1639.
doi: 10.1016/j.ophtha.2019.07.024 |
19 |
Liu H , Li L , Wormstone IM , et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs[J]. JAMA Ophthalmol, 2019, 137 (12): 1353- 1360.
doi: 10.1001/jamaophthalmol.2019.3501 |
20 |
Grassmann F , Mengelkamp J , Brandl C , et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography[J]. Ophthalmol, 2018, 125 (9): 1410- 1420.
doi: 10.1016/j.ophtha.2018.02.037 |
21 |
Burlina PM , Joshi N , Pacheco KD , et al. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration[J]. JAMA Ophthalmol, 2018, 136 (12): 1359- 1366.
doi: 10.1001/jamaophthalmol.2018.4118 |
22 |
Keenan TD , Dharssi S , Peng Y , et al. A deep learning approach for automated detection of geographic atrophy from color fundus photographs[J]. Ophthalmol, 2019, 126 (11): 1533- 1540.
doi: 10.1016/j.ophtha.2019.06.005 |
23 |
Keel S , Li Z , Scheetz J , et al. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs[J]. Clin Experiment Ophthalmol, 2019, 47 (8): 1009- 1018.
doi: 10.1111/ceo.13575 |
24 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136 (7): 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
25 |
Gupta K , Campbell JP , Taylor S , et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment[J]. JAMA Ophthalmol, 2019, 137 (9): 1029- 1036.
doi: 10.1001/jamaophthalmol.2019.2442 |
26 |
Taylor S , Brown JM , Gupta K , et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[J]. JAMA Ophthalmol, 2019, 137 (9): 1022- 1028.
doi: 10.1001/jamaophthalmol.2019.2433 |
27 |
Tan Z , Simkin S , Lai C , et al. Deep learning algorithm for automated diagnosis of retinopathy of prematurity plus disease[J]. Transl Vis Sci Technol, 2019, (6): 23.
doi: 10.1167/tvst.8.6.23 |
28 |
De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
29 |
Kermany DS , Goldbaum M , Cai W , et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172 (5): 1122- 1131.
doi: 10.1016/j.cell.2018.02.010 |
30 |
Schlegl T , Waldstein SM , Bogunovic H , et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmol, 2018, 125 (4): 549- 558.
doi: 10.1016/j.ophtha.2017.10.031 |
31 |
Sun Z , Tang F , Wong R , et al. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study[J]. Ophthalmol, 2019, 126 (12): 1675- 1684.
doi: 10.1016/j.ophtha.2019.06.016 |
32 |
Medeiros FA , Jammal AA , Thompson AC . From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs[J]. Ophthalmol, 2019, 126 (4): 513- 521.
doi: 10.1016/j.ophtha.2018.12.033 |
33 |
Christopher M , Bowd C , Belghith A , et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head en face images and retinal nerve fiber layer thickness maps[J]. Ophthalmol, 2020, 127 (3): 346- 356.
doi: 10.1016/j.ophtha.2019.09.036 |
34 |
Sample PA , Chan K , Boden C , et al. Using Unsupervised Learning with Variational Bayesian Mixture of Factor Analysis to Identify Patterns of Glaucomatous Visual Field Defects[J]. Invest Ophthalmol Vis Sci, 2004, 45: 2596- 2605.
doi: 10.1167/iovs.03-0343 |
35 |
Asaoka R , Murata H , Iwase A , et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmol, 2016, 123 (9): 1974- 1980.
doi: 10.1016/j.ophtha.2016.05.029 |
36 | Wang M , Tichelaar J , Pasquale LR , et al. Characterization of central visual field loss in end-stage glaucoma by unsupervised artificial intelligence[J]. JAMA Ophthalmol, 2020, 138 (2): 190- 198. |
37 | Son J , Shin JY , Kim HD , et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images[J]. Ophthalmol, 2020, 127 (1): 85- 94. |
38 |
Varadarajan AV , Bavishi P , Ruamviboonsuk P , et al. Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning[J]. Nat Commun, 2020, 11 (1): 130.
doi: 10.1038/s41467-019-13922-8 |
39 |
Cheung CY , Tang F , Ting DSW , et al. Artificial intelligence in diabetic eye disease screening[J]. Asia Pacific Ophthalmol, 2019, 24
doi: 10.22608/APO.201976 |
40 | Kapoor R , Whigham BT , Al-Aswad LA . Artificial intelligence and optical coherence tomography imaging[J]. Asia Pacific Ophthalmol, 2019, 8 (2): 187- 194. |
41 | Li Z , Keel S , Liu C , et al. Can artificial intelligence make screening faster, more accurate, and more accessible?[J]. Asia Pacific Ophthalmol, 2018, 7 (6): 436- 441. |
42 | Tan Z , Scheetz J , He M . Artificial intelligence in ophthalmology: accuracy, challenges, and clinical application[J]. Asia Pacific Ophthalmol, 2019, 8 (3): 197- 199. |
43 |
Schmidt Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1- 29.
doi: 10.1016/j.preteyeres.2018.07.004 |
44 |
Ting DSW , Peng L , Varadarajan AV , et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759.
doi: 10.1016/j.preteyeres.2019.04.003 |
45 |
Bellemo V , Lim ZW , Lim G , et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study[J]. Lancet Digit Heal, 2019, 1 (1): e35- e44.
doi: 10.1016/S2589-7500(19)30004-4 |
46 |
Quellec G , Lamard M , Conze PH , et al. Automatic detection of rare pathologies in fundus photographs using few-shot learning[J]. Med Image Anal, 2020, 61: 101660.
doi: 10.1016/j.media.2020.101660 |
47 |
Burlina PM , Joshi N , Pekala M , et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135 (11): 1170- 1176.
doi: 10.1001/jamaophthalmol.2017.3782 |
48 |
Burlina P , Pacheco KD , Joshi N , et al. Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis[J]. Comput Biol Med, 2017, 82: 80- 86.
doi: 10.1016/j.compbiomed.2017.01.018 |
49 |
Samagaio G , Estévez A , Moura J , et al. Automatic macular edema identification and characterization using OCT images[J]. Comput Methods Programs Biomed, 2018, 163: 47- 63.
doi: 10.1016/j.cmpb.2018.05.033 |
50 |
Sayres R , Taly A , Rahimy E , et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy[J]. Ophthalmol, 2019, 126 (4): 552- 564.
doi: 10.1016/j.ophtha.2018.11.016 |
51 |
Chakravarthy U , Goldenberg D , Young G , et al. Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration[J]. Ophthalmol, 2016, 123 (8): 1731- 1736.
doi: 10.1016/j.ophtha.2016.04.005 |
52 | Ran AR , Cheung CY , Wang X , et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis[J]. Lancet Digit Heal, 2019, 1 (4) |
53 |
Ronneberger O , Fischer P , Brox T . U-net: convolutional networks for biomedical image segmentation[M]. Cham: Springer International Publishing, 2015: 234- 241.
doi: 10.1007/978-3-319-24574-4_28 |
54 |
Zheng R , Liu L , Zhang S , et al. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network[J]. Biomedical Optics Express, 2018, 9 (10): 4863- 4878.
doi: 10.1364/BOE.9.004863 |
55 | Zhao HL, Sun NL. Improved U-net model for nerve segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017: 496-504. doi: 10.1007/978-3-319-71589-6_43. |
56 | Burewar S, Gonde AB, Vipparthi SK. Diabetic Retinopathy Detection by Retinal segmentation with Region merging using CNN[C]//2018 IEEE 13th International Conference on Industrial and Information Systems (ICⅡS). December 1-2, 2018, Rupnagar, India. IEEE, 2018: 136-142. doi: 10.1109/ICⅡNFS.2018.8721315. |
57 | Tennakoon R, Gostar AK, Hoseinnezhad R, et al. Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). April 4-7, 2018, Washington, DC, USA. IEEE, 2018: 1436-1440. doi: 10.1109/ISBI.2018.8363842. |
58 |
Keel S , Wu J , Lee PY , Scheetz J , He M . Visualizing Deep Learning Models for the Detection of Referable Diabetic Retinopathy and Glaucoma[J]. JAMA Ophthalmology, 2019, 137 (3): 288- 292.
doi: 10.1001/jamaophthalmol.2018.6035 |
59 |
Gargeya R , Leng T . Automated Identification of Diabetic Retinopathy Using Deep Learning[J]. Ophthalmology, 2017, 124 (7): 962- 969.
doi: 10.1016/j.ophtha.2017.02.008 |
60 | Moosavi-Dezfooli SM, Fawzi A, Frossard P. DeepFool: a simple and accurate method to fool deep neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2574-2582. doi: 10.1109/CVPR.2016.282. |
61 |
Su JW , Vargas DV , Sakurai K . One pixel attack for fooling deep neural networks[J]. IEEE Trans Evol Comput, 2019, 23 (5): 828- 841.
doi: 10.1109/TEVC.2019.2890858 |
62 |
Rohm M , Tresp V , Muller M , et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmol, 2018, 125 (7): 1028- 1036.
doi: 10.1016/j.ophtha.2017.12.034 |
63 |
Arcadu F , Benmansour F , Maunz A , et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients[J]. NPJ Digit Med, 2019, 2: 92.
doi: 10.1038/s41746-019-0172-3 |
64 |
Christopher M , Belghith A , Weinreb RN , et al. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict Glaucoma progression[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2748- 2756.
doi: 10.1167/iovs.17-23387 |
65 |
Poplin R , Varadarajan AV , Blumer K , et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng, 2018, 2 (3): 158- 164.
doi: 10.1038/s41551-018-0195-0 |
66 |
Elmore JG , Wells CK , Lee CH , et al. Variability in radiologists' interpretations of mammograms[J]. N Engl J Med, 1994, 331 (22): 1493- 1499.
doi: 10.1056/NEJM199412013312206 |
67 |
Elmore JG , Longton GM , Carney PA , et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens[J]. JAMA, 2015, 313 (11): 1122- 1132.
doi: 10.1001/jama.2015.1405 |
68 |
Maspero M , Savenije MHF , Dinkla AM , et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy[J]. Phys Med Biol, 2018, 63 (18): 185001.
doi: 10.1088/1361-6560/aada6d |
69 |
Jin CB , Kim H , Liu M , et al. Deep CT to MR synthesis using paired and unpaired data[J]. Sensors (Basel), 2019, 19 (10): 2361.
doi: 10.3390/s19102361 |
70 |
Yang QS , Yan PK , Zhang YB , et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Trans Med Imaging, 2018, 37 (6): 1348- 1357.
doi: 10.1109/TMI.2018.2827462 |
71 |
Yi X , Walia E , Babyn P . Generative adversarial network in medical imaging: a review[J]. Med Image Anal, 2019, 58: 101552.
doi: 10.1016/j.media.2019.101552 |
72 |
Bossuyt PM , Reitsma JB , Bruns DE , et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies[J]. Clin Chem, 2015, 61 (12): 1446- 1452.
doi: 10.1373/clinchem.2015.246280 |
73 | Collins GS , Reitsma JB , Altman DG , et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement[J]. Br J Surg, 2015, 102 (3): 148- 158. |
74 |
CONSORT-AI and SPIRIT-AI Steering Group . Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed[J]. Nat Med, 2019, 25 (10): 1467- 1468.
doi: 10.1038/s41591-019-0603-3 |
75 |
Liu XX , Faes L , Calvert MJ , et al. Extension of the CONSORT and SPIRIT statements[J]. Lancet, 2019, 394 (10205): 1225.
doi: 10.1016/S0140-6736(19)31819-7 |
76 |
Collins GS , Moons KGM . Reporting of artificial intelligence prediction models[J]. Lancet, 2019, 393 (10181): 1577- 1579.
doi: 10.1016/S0140-6736(19)30037-6 |
77 |
Lin HT , Li RY , Liu ZZ , et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52- 59.
doi: 10.1016/j.eclinm.2019.03.001 |
78 |
Bossuyt PM , Irwig L , Craig J , et al. Comparative accuracy: assessing new tests against existing diagnostic pathways[J]. BMJ, 2006, 332 (7549): 1089- 1092.
doi: 10.1136/bmj.332.7549.1089 |
79 |
Akhtar N , Mian A . Threat of adversarial attacks on deep learning in computer vision: a survey[J]. IEEE Access, 2018, 6: 14410- 14430.
doi: 10.1109/ACCESS.2018.2807385 |
80 |
Finlayson SG , Bowers JD , Ito J , et al. Adversarial attacks on medical machine learning[J]. Science, 2019, 363 (6433): 1287- 1289.
doi: 10.1126/science.aaw4399 |
81 | FDA. Software as a Medical Device[ER/OL]. (2018-12-04).[2020-03-08]. https://www.fda.gov/medical-devices/digital-health/software-medical-device-samd. |
82 | FDA. Digital Health Innovation Action Plan[ER/OL]. (2018).[2020-03-08]. https://www.fda.gov/media/106331/download. |
83 | FDA. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems[ER/OL]. (2018-12-04).[2020-05-13]. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-bas-ed-device-detect-certain-diabetes-related-eye. |
84 | FDA. FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients[ER/OL]. (2018-02-13).[2020-05-13]. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye. |
85 | Harvard Business Review. What artificial intelligence can and can't do right now[ER/OL]. (2016-11-09).[2020-10-10]. https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now. |
[1] | Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73. |
[2] | Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21. |
[3] | Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1-4. |
[4] | QU Yi, ZHANG Huankai, SONG Xian, CHU Baorui. Research progress of artificial intelligence diagnosis system in retinal diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 39-44. |
[5] | Carol Y. Cheung, RAN Anran. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 24-32. |
[6] | GE Zongyuan, HE Wanji, JU Lie, YAO Xuan, WANG Lin, HUANG Yelin, YANG Zhiwen, XIONG Jianhao, BAO Yining, LI Ming, ZHANG Bing, ZHAO Xin. New developments in ophthalmic AI algorithms [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 17-23. |
[7] | LIN Haotian, LI Longhui, CHEN Jingjing. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16. |
[8] | ZHANG Yan. Analysis on prescriptions of glococorticoid drugs for inpatients [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(S2): 108-111. |
[9] | GUO Xiao-yu1, GAO Yan-qiu1, LIU Zhao-xu2. Application of the UPOINT clinical classification in patients with chronic prostatitis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(1): 62-66. |
|