JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES) ›› 2017, Vol. 55 ›› Issue (6): 93-97.doi: 10.6040/j.issn.1671-7554.0.2017.349

Previous Articles     Next Articles

A stroke prediction model for the health management population

LI Min1,2, WANG Chunxia3, XIA Bing3, ZHU Qian1,2, SUN Yuanying1,2, WANG Shukang1,2, XUE Fuzhong1,2, JIA Hongying4   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Cheeloo Research Center for Biomedical Big Data, Shandong University, Jinan 250012, Shandong, China;
    3. Health Management Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, China;
    4. Evidence Based Medicine Center, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Received:2017-04-24 Online:2017-06-10 Published:2017-06-10

Abstract: Objective To construct a stroke prediction model for the health management population aged above 20 years. Methods A total of 74,326 cohort members without stroke at baseline were included based on the Shandong Multi-center Longitudinal Cohort for Health Management. Fine-Gray model was used to construct a stroke risk prediction model for females and males respectively. Results During the average follow-up of 3.9 years, 1,299(male: 829, female: 470)new stroke occurred, and the incidence density was 4.51‰. The risk factors for males included age, hypertension, coronary heart disease, diabetes mellitus, smoking, body mass index, triglyceride, white blood cell count, platelet count, high-density lipoprotein, and total cholesterol. The risk factors for females included age, hypertension, coronary heart disease, red blood cell count, hemoglobin, and body mass index. The estimated area under the receiver-operating characteristic curve(AUC)for the male model and female model was 0.846(95%CI: 0.828-0.864), and 0.878(95%CI: 0.858-0.898). Conclusion The stroke risk prediction model we constructed is effective in identifying individuals at high risk of stroke in the health management population.

Key words: Stroke, Prediction model, Longitudinal cohort, Health management population

CLC Number: 

  • R743.3
[1] Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1459-1544.
[2] 王陇德. 中国脑卒中防治报告(2015)[M]. 北京:中国协和医科大学出版社, 2015.
[3] Chambless LE, Heiss G, Shahar E, et al. Prediction of ischemic stroke risk in the atherosclerosis risk in communities study[J]. Am J Epidemiol, 2004, 160(3): 259-269.
[4] Lumley T, Kronmal RA, Cushman M, et al. A stroke prediction score in the elderly: validation and Web-based application[J]. J Clin Epidemiol, 2002, 55(2): 129-136.
[5] Wolf PA, DAgostino RB, Belanger AJ, et al. Probability of stroke: a risk profile from the framingham study[J]. Stroke,1991, 22(3): 312-318.
[6] Quinn GR, Singer DE, Chang Y, et al. How well do stroke risk scores predict hemorrhage in patients with atrial fibrillation?[J]. Am J Cardiol, 2016, 118(5): 697-699.
[7] 国家“十五”攻关“冠心病、脑卒中综合危险度评估及干预方案的研究”课题组. 国人缺血性心血管病发病危险的评估方法及简易评估工具的开发研究[J]. 中华心血管病杂志, 2003, 31(12): 16-24.
[8] DAgostino RB, Pencina MJ, Massaro JM, et al. Cardiovascular disease risk assessment: insights from framingham[J]. Glob Heart, 2013, 8(1): 11-23.
[9] Yang X, Li J, Hu D, et al. Predicting the 10-Year risks of atherosclerotic cardiovascular disease in Chinese Population The China-PAR Project(Prediction for ASCVD Risk in China)[J]. Circulation, 2016, 134(19): 1430-1440.
[10] Fine J, Gray R. A proportional hazards model for the sub-distribution of a competing risk[J]. Am Stat Assoc, 1999, 94(446): 496-509.
[11] Vartiainen E, Laatikainen T, Peltonen M, et al. Predicting coronary heart disease and stroke: the FINRISK calculator[J]. Glob Heart, 2016, 11(2): 213-216.
[12] Ferket BS, van Kempen BJ, Wieberdink RG, et al. Separate prediction of intracerebral hemorrhage and ischemic stroke[J]. Neurology, 2014, 82(20): 1804-1812.
[13] Assmann G, Schulte H, Cullen P, et al.Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Münster(PROCAM)study[J]. Eur J Clin Invest, 2007, 37(12): 925-932.
[14] Manuel DG, Tuna M, Perez R, et al. Predicting stroke risk based on health behaviours: development of the stroke population risk tool(SPoRT)[J]. PLoS One, 2015, 10(12): e0143342. doi: 10.1371/journal.pone.0143342.
[15] 刘晓婷. 我国城乡居民脑卒中疾病负担研究[D]. 北京: 中国疾病预防控制中心, 2011.
[16] 吴亚哲, 陈伟伟. 中国脑卒中流行概况[J]. 心脑血管病防治,2016, 16(6):410-414.
[17] Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review[J]. Neurology, 2013, 81(3): 264-272.
[18] Liu M, Wu B, Wang WZ, et al. Stroke in China: epidemiology, prevention, and management strategies[J]. Lancet Neurol, 2007, 6(5): 456-464.
[19] Wang YL, Wu D, Nguyen-Huynh MN, et al. Antithrombotic management of ischaemic stroke and transient ischaemic attack in China: A consecutive cross-sectional survey[J]. Clin Exp Pharmacol Physiol, 2010, 37(8): 775-781.
[20] ODonnell MJ, Denis X, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries(the INTERSTROKE study): a case-control study[J]. Lancet, 2010, 376(9735): 112-123.
[21] Wu Y, Liu X, Li X, et al. Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in chinese adults[J]. Circulation, 2006, 114(21): 2217-2225.
[22] Elkind MSV. Princeton proceedings: inflammatory mechanisms of stroke[J]. Stroke, 2010, 41(10 Suppl): S3-S8.
[23] Gillum RF, Mussolino ME, Ingram DD. Physical activity and stroke incidence in women and men: The NHANESI epidemiologic follow-up study[J]. Am J Epidemiol, 1996, 143(9): 860-869.
[24] Irace C, Scarinci F, Scorcia V, et al. Association among low whole blood viscosity, haematocrit, haemoglobin and diabetic retinopathy in subjects with type 2 diabetes[J]. Br J Ophthalmol, 2011, 95(1): 94-98.
[25] Lim ST, Coughlan CA, Murphy SJ, et al. Platelet function testing in transient ischaemic attack and ischaemic stroke: A comprehensive systematic review of the literature[J]. Platelets, 2015, 26(5): 402-412.
[26] Taleb S. Inflammation in atherosclerosis[J]. Arch Cardiovasc Dis, 2016, 109(12): 708-715.
[27] Deppermann C, Kubes P. Platelets and infection[J]. Semin Immunol, 2016, 28(6): 536-545.
[28] Han JY, Choi DH, Choi SW, et al. Stroke or coronary artery disease prediction from mean platelet volume in patients with type 2 diabetes mellitus[J]. Platelets, 2013, 24(5): 401-406.
[29] Ozge C, Tarik BA, Azize S. Platelets proteomic profiles of acute ischemic stroke patients[J]. Plos One, 2016, 11(6): e0158287. doi: 10.1371/journal.pone.0158287. eCollection 2016.
[1] WANG Jichuan, LIU Ruihong, LI Dongzhi, XUE Fuzhong. Application of the geographical weighted regression model to explore the cause of stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(8): 88-94.
[2] LI Jiqing, ZHAO Huanzong, SONG Binghong, ZHANG Lichun, LI Xiangyi, CHEN Yafei, WANG Ping, XUE Fuzhong. Risk prediction model of cardiovascular disease based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 56-60.
[3] YU Tao, LIU Huanle, FENG Xin, XU Fuyin, CHEN Yafei, XUE Fuzhong, ZHANG Chengqi. A hypertension risk prediction model based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 61-65.
[4] WANG Chunxia, XU Yibo, YANG Ning, XIA Bing, WANG Ping, XUE Fuzhong. A prediction model for coronary heart disease risks based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 66-71.
[5] ZHANG Guang, WANG Guangyin, WU Hongyan, ZHANG Hongyu, WANG Tingting, LI Jiqing, LI Min, KANG Fengling, LIU Yanxun, XUE Fuzhong. A prediction model of hyperlipidemia risk based on the health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 72-76.
[6] SU Ping, YANG Yachao, YANG Yang, JI Jiadong, DAYIMU Alimu, LI Min, XUE Fuzhong, LIU Yanxun. Prediction models on the onset risks of type 2 diabetes among the health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 82-86.
[7] SUN Yuanying, YANG Yachao, QU Mingling, CHEN Yanmin, LI Min, WANG Shukang, XUE Fuzhong, LIU Yunxia. A prediction model for metabolic syndrome risk: a study based on the health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 87-92.
[8] ZHOU Miao, XIA Tongyao, SUN Ailing, LI Ming, SHEN Zhenwei, BIAN Weiwei, JIANG Zheng, KANG Fengling, LIU Xiaojuan, XUE Fuzhong, LIU Jing. Risk prediction model of chronic kidney disease in health management population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 98-103.
[9] YU Yuanyuan, WANG Chunxia, SU Ping, SUN Yuanying, XUE Fuzhong, LIU Yanxun. A prediction model to estimate risks of cataract based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 104-107.
[10] ZHANG Zhentang, YANG Yang, HAN Fujun, CHEN Xianghua, JI Xiaokang, WANG Yongchao, WANG Shukang, SUN Yuanying, LI Min, CHEN Yafei, WANG Li, XUE Fuzhong, LIU Yanxun. A prediction model of 5-year CVD risks for type 2 diabetic patients: a prospective cohort study among Chinese community population [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 108-113.
[11] LIU Xiaojuan, JIANG Zheng, KANG Fengling, ZHOU Miao, LIN Weiqiang, XUE Fuzhong. Association between neutrophil count and nonalcoholic fatty liver disease:a prospective cohort study [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 119-123.
[12] LI Fan, SHANG Wei. Clinical predictors of remote lesions for patients with acute ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(6): 61-64.
[13] QU Lixin, SHI Xinghua, DU Yifeng. Relationship between circulating platelets microparticles and endothelial microparticls and prognosis in patients with acute ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(12): 32-36.
[14] LIU Yanxun, LIU Jia, ZHANG Tao, WANG Lu, XUE Fuzhong, WANG Ping. Type 2 diabetes mellitus associated with thyroid nodules: a longitudinal health check-up cohort study [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(8): 83-86.
[15] CHEN Haili, GU Jiaoyang, ZHANG Wenjing, YUAN Linran, ZHENG Juan, YUAN Zhongrui. Involvement of canonical Wnt pathway in postischemic angiogenesis in a rat model of ischemic stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(4): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!