山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 17-23.doi: 10.6040/j.issn.1671-7554.0.2023.0183
• 基础医学 • 上一篇
闫丛丛1,陈辰1,谢倩2,王亚楠2,张鑫璐2,张迎春2,武斌2
YAN Congcong1, CHEN Chen1, XIE Qian2, WANG Yanan2, ZHANG Xinlu2, ZHANG Yingchun2, WU Bin2
摘要: 目的 研究双酚A(BPA)暴露对卵巢颗粒细胞功能表观遗传学的影响。 方法 将人卵巢颗粒瘤细胞(KGN细胞)暴露于BPA(浓度分别为0、0.02、0.2、2、20 μg/mL)24 h,作为溶剂对照组、0.02 μg/mL BPA组、0.2 μg/mL BPA组、2 μg/mL BPA组、20 μg/mL BPA组,测定mRNA m6A的修饰水平和m6A甲基化调控基因的表达变化;Merip-qPCR法检测抗氧化转录因子(Nrf2)的m6A修饰水平。 结果 BPA下调mRNA m6A修饰水平(P<0.001),并改变了m6A甲基化调控基因的表达(P<0.05),2 μg/mL BPA组的超氧化物歧化酶(SOD)表达降低(P<0.05),Nrf2的m6A修饰水平降低(P<0.05)。 结论 BPA暴露通过下调Nrf2的m6A修饰导致人卵巢颗粒瘤细胞(KGN细胞)氧化应激增加,颗粒细胞功能损伤,对卵巢颗粒细胞表观遗传学产生影响。
中图分类号:
[1] Vandenberg LN, Chahoud I, Heindel JJ, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A [J]. Environ Health Perspect, 2010, 118(8): 1055-1070. [2] Lin ML, Hua R, Ma J, et al. Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signaling pathway [J]. Environ Int, 2021, 147: 106298. doi: 10.1016/j.envint.2020.106298. [3] Wang XY, Jiang SW, Wang LG, et al. Interfering effects of bisphenol A on in vitro growth of preantral follicles and maturation of oocyes [J]. Clin Chim Acta, 2018, 485: 119-125. doi: 10.1016/j.cca.2018.06.041. [4] Zhu XQ, Tian GG, Yu BL, et al. Effects of bisphenol A on ovarian follicular development and female germline stem cells [J]. Arch Toxicol, 2018, 92(4): 1581-1591. [5] Moore-Ambriz TR, Acuña-Hernández DG, Ramos-Robles B, et al. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes [J]. Toxicol Appl Pharmacol, 2015, 289(3): 507-514. [6] Wang W, Hafner KS, Flaws JA. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse [J]. Toxicol Appl Pharmacol, 2014, 276(2): 157-164. [7] Li XY, Xiong XS, Yi CQ. Epitranscriptome sequencing technologies: decoding RNA modifications [J]. Nat Methods, 2016, 14(1): 23-31. [8] Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers [J]. Annu Rev Cell Dev Biol, 2017, 33: 319-342. doi: 10.1146/annurev-cellbio-100616-060758. [9] Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification [J]. Int J Biol Sci, 2020, 16(11): 1929-1940. [10] Cao ZB, Zhang DD, Wang YQ, et al. Identification and functional annotation of m6A methylation modification in granulosa cells during antral follicle development in pigs [J]. Anim Reprod Sci, 2020, 219: 106510. doi: 10.1016/j.anireprosci.2020.106510. [11] Fan Y, Zhang CS, Zhu GY. Profiling of RNA N6-methyladenosine methylation during follicle selection in chicken ovary [J]. Poult Sci, 2019, 98(11): 6117-6124. [12] Cayir A, Barrow TM, Guo LQ, et al. Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes [J]. Environ Res, 2019, 175: 228-234. doi: 10.1016/j.envres.2019.05.011. [13] Mansur A, Adir M, Yerushalmi G, et al. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? [J]. Hum Reprod, 2016, 31(7): 1562-1569. [14] Xuan JJ, Sun WJ, Lin PH, et al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data [J]. Nucleic Acids Res, 2018, 46(D1): D327-D334. [15] Zhou Y, Zeng P, Li YH, et al. SRAMP: prediction of mammalian N6-methyladenosine(m6A)sites based on sequence-derived features [J]. Nucleic Acids Res, 2016, 44(10): e91. doi:10.1093/nar/gkw104. [16] Mansur A, Israel A, Combelles CMH, et al. Bisphenol-A exposure and gene expression in human luteinized membrana granulosa cells in vitro [J]. Hum Reprod, 2017, 32(2): 409-417. [17] Chianese R, Troisi J, Richards S, et al. Bisphenol A in reproduction: epigenetic effects [J]. Curr Med Chem, 2018, 25(6): 748-770. [18] Zhang S, Deng WL, Liu QY, et al. Altered m6 A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients [J]. J Cell Mol Med, 2020, 24(20): 11874-11882. [19] Zhao TX, Wang JK, Shen LJ, et al. Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl)phthalate-induced prepubertal testicular injury [J]. Environ Pollut, 2020, 259: 113911. doi: 10.1016/j.envpol.2020.113911. [20] Xia CL, Wang J, Wu ZY, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway [J]. Toxicology, 2021, 462: 152961. doi: 10.1016/j.tox.2021.152961. [21] Zhao TX, Wang JK, Wu YH, et al. Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury [J]. Environ Pollut, 2021, 268(Pt A): 115627. doi: 10.1016/j.envpol.2020.115627. [22] Park MH, Jeong E, Choudhury M. Mono-(2-ethylhexyl)phthalate regulates cholesterol efflux via microRNAs regulated m6A RNA methylation [J]. Chem Res Toxicol, 2020, 33(2): 461-469. [23] Lin Z, Hsu PJ, Xing XD, et al. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis [J]. Cell Res, 2017, 27(10): 1216-1230. [24] Mu HY, Zhang T, Yang Y, et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice [J]. Cell Death Dis, 2021, 12(11): 989. doi: 10.1038/s41419-021-04272-9. [25] Tang C, Klukovich R, Peng HY, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells [J]. Proc Natl Acad Sci U S A, 2018, 115(2): E325-E333. [26] Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development [J]. PLoS Genet, 2018, 14(5): e1007412. doi: 10.1371/journal.pgen.1007412. [27] Ivanova I, Much C, di Giacomo M, et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence [J]. Mol Cell, 2017, 67(6): 1059-1067.e4. [28] Jiang ZX, Wang YN, Li ZY, et al. Correction: the m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging [J]. Cell Death Dis, 2021, 12(12): 1114. doi: 10.1038/s41419-021-04016-9. [29] Sabuncu T, Vural H, Harma M, et al. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease [J]. Clin Biochem, 2001, 34(5): 407-413. [30] Papalou O, Victor VM, Diamanti-Kandarakis E. Oxidative stress in polycystic ovary syndrome [J]. Curr Pharm Des, 2016, 22(18): 2709-2722. [31] Wang J, Ishfaq M, Xu L, et al. METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating Keap1/Nrf2 pathway [J]. Front Pharmacol, 2019, 10: 517. doi: 10.3389/fphar.2019.00517. [32] Xia CL, Wang J, Wu ZY, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway [J]. Toxicology, 2021, 462: 152961. doi: 10.1016/j.tox.2021.152961. [33] Zhou SM, Li JZ, Chen HQ, et al. FTO-Nrf2 axis regulates bisphenol F-induced leydig cell toxicity in an m6A-YTHDF2-dependent manner [J]. Environ Pollut, 2023, 325: 121393. doi: 10.1016/j.envpol.2023.121393. [34] Ding H, Li ZQ, Li X, et al. FTO alleviates CdCl2-induced apoptosis and oxidative stress via the AKT/Nrf2 pathway in bovine granulosa cells [J]. Int J Mol Sci, 2022, 23(9): 4948. doi: 10.3390/ijms23094948. |
[1] | 扈艳雯,赵蕙琛,马小莉,刘元涛,张玉超. GLP-1通过细胞色素P450表氧化酶途径抑制氧化应激[J]. 山东大学学报 (医学版), 2023, 61(8): 10-16. |
[2] | 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26. |
[3] | 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9. |
[4] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[5] | 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9. |
[6] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[7] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[8] | 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5. |
[9] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[10] | 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24. |
[11] | 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39. |
[12] | 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34. |
[13] | 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85. |
[14] | 李艳,孙凤娇,张天然,王雨心,张正铎,高希宝. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报 (医学版), 2020, 58(5): 98-106. |
[15] | 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14. |
|