山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (8): 10-16.doi: 10.6040/j.issn.1671-7554.0.2023.0450
• 基础医学 • 上一篇
扈艳雯1,赵蕙琛2,马小莉2,刘元涛3,张玉超2
HU Yanwen1, ZHAO Huichen2, MA Xiaoli2, LIU Yuantao3, ZHANG Yuchao2
摘要: 目的 研究GLP-1在体外对氧化应激的保护作用,并从细胞色素P450(CYP450)表氧化酶途径探讨可能的机制。 方法 H2O2处理人脐静脉内皮细胞(HUVECs)构建氧化应激模型;实验分为对照组、H2O2组、H2O2+7-36a组、H2O2+9-36a组、H2O2+7-36a+Danazol(CYP2J2蛋白抑制剂)组、H2O2+9-36a+Danazol组。CCK8方法检测细胞存活率;荧光探针标记法测定细胞内ROS水平;Western blotting方法检测葡萄糖调节蛋白78(GRP78)及细胞色素P450表氧化酶2J2(CYP2J2)的表达变化。 结果 600 μmol/L的H2O2处理HUVECs 3 h建立氧化应激模型,与对照组比较,H2O2组细胞存活率下降(P<0.001),ROS水平升高(P<0.001),GRP78蛋白表达量增加(P<0.05),CYP2J2蛋白表达量下降(P<0.05)。与H2O2组比较,H2O2+7-36a组和H2O2+9-36a组细胞存活率均上升(P<0.05;P<0.01),ROS水平均下降(P<0.001),GRP78表达量均减少(P<0.01),CYP2J2表达量均增加(P<0.05)。加入Danazol后,与H2O2+7-36a组相比,H2O2+7-36a+Danazol组的细胞存活率差异无统计学意义,ROS水平升高(P<0.001),GRP78蛋白表达增加(P<0.001),CYP2J2表达降低(P<0.05);与H2O2+9-36a组相比,H2O2+9-36a+Danazol组的细胞存活率差异无统计学意义,ROS水平升高(P<0.001),GRP78蛋白表达增加(P<0.01),CYP2J2表达降低(P<0.01)。 结论 GLP-1(7-36a)及其代谢产物GLP-1(9-36a)改善H2O2诱导的HUVECs细胞存活率下降与高氧化应激水平,其可能通过CYP450表氧化酶途径发挥抑制氧化应激的作用。
中图分类号:
[1] Low Wang CC, Hess CN, Hiatt WR, et al. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus-mechanisms, management, and clinical considerations[J]. Circulation, 2016, 133(24): 2459-2502. [2] Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history?[J]. Clin Diabetes Endocrinol, 2017, 3: 1. doi:10.1186/s40842-016-0039-3. [3] Batchuluun B, Inoguchi T, Sonoda N, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells[J]. Atherosclerosis, 2014, 232(1): 156-164. [4] Takahashi P, Xavier DJ, Lima JEBF, et al. Transcript expression profiles and microRNA regulation indicate an upregulation of processes linked to oxidative stress, DNA repair, cell death, and inflammation in type 1 diabetes mellitus patients[J]. J Diabetes Res, 2022, 2022:3511329. doi: 10.1155/2022/3511329. [5] Li JF, Zheng J, Wang S, et al. Cardiovascular benefits of native GLP-1 and its metabolites: an indicator for GLP-1-therapy strategies[J]. FrontPhysiol, 2017, 8: 15. doi:10.3389/fphys.2017.00015. [6] Al-Dwairi A, Alqudah TE, Al-Shboul O, et al. Glucagon-like peptide-1 exerts anti-inflammatory effects on mouse colon smooth muscle cells through the cyclic adenosine monophosphate/nuclear factor-κB pathway in vitro[J]. Inflamm Res, 2018, 11: 95-109. doi: 10.2147/JIR.S152835. [7] Wang DJ, Luo P, Wang YB, et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism[J]. Diabetes, 2013, 62(5): 1697-1708. [8] Shen M, Sun DD, Li WJ, et al. The synergistic effect of valsartan and LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo] acetyl-2-cyanopyrrolidine] on vascular oxidative stress and inflammation in type 2 diabetic mice[J]. Exp Diabetes Res, 2012, 2012: 146194. doi:10.1155/2012/146194. [9] Zhang SS, Chen GZ, Li N, et al. CYP2J2 overexpression ameliorates hyperlipidemia via increased fatty acid oxidation mediated by the AMPK pathway[J]. Obesity, 2015, 23(7): 1401-1413. [10] Aliwarga T, Evangelista EA, Sotoodehnia N, et al. Regulation of CYP2J2 and EET levels in cardiac disease and diabetes[J]. Int J Mol Sci, 2018, 19(7): 1916. doi:10.3390/ijms19071916. [11] Wang Y, Wei X, Xiao X, et al. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways[J]. J Pharmacol Exp Ther, 2005, 314(2): 522-532. [12] Yang SL, Lin L, Chen JX, et al. Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways[J]. Am J Physiol Heart Circ Physiol, 2007, 293(1): H142-H151. [13] Chen GZ, Wang PH, Zhao G, et al. Cytochrome P450 epoxygenase CYP2J2 attenuates nephropathy in streptozotocin-induced diabetic mice[J]. Prostaglandins Other Lipid Mediat, 2011, 96(1/2/3/4): 63-71. [14] Xu XZ, Zhao CX, Wang LY, et al. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice[J]. Diabetes, 2010, 59(4): 997-1005. [15] Abraham NG, Sodhi K, Silvis AM, et al. CYP2J2 targeting to endothelial cells attenuates adiposity and vascular dysfunction in mice fed a high-fat diet by reprogramming adipocyte phenotype[J]. Hypertension, 2014, 64(6): 1352-1361. [16] Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications[J]. Eur J Prev Cardiol, 2019, 26(2_suppl): 25-32. [17] Chen G, Cai LC, Chen B, et al. Serum level of endogenous secretory receptor for advanced glycation end products and other factors in type 2 diabetic patients with mild cognitive impairment[J]. Diabetes Care, 2011, 34(12): 2586-2590. [18] Weyemi U, Dupuy C. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses[J]. Mutat Res, 2012, 751(2): 77-81. [19] Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research[J]. World J Diabetes, 2015, 6(13): 1246-1258. [20] Li Q, Lin YJ, Wang S, et al. GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells[J]. Sci Rep, 2017, 7(1): 8008. doi:10.1038/s41598-017-06712-z. [21] Boudreau HE, Casterline BW, Burke DJ, et al. Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells[J]. Br J Cancer, 2014, 110(10): 2569-2582. [22] Shah HS, Morieri ML, Marcovina SM, et al. Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD[J]. Diabetes Care, 2018, 41(2): 348-355. [23] Yue W, Li Y, Ou DK, et al. The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2[J]. IUBMB Life, 2019, 71(9): 1347-1354. [24] Gaspari T, Liu HB, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model[J]. Diab Vasc Dis Res, 2011, 8(2): 117-124. [25] Cheng CK, Luo JY, Lau CW, et al. A GLP-1 analog lowers ER stress and enhances protein folding to ameliorate homocysteine-induced endothelial dysfunction[J]. Acta Pharmacol Sin, 2021, 42(10): 1598-1609. [26] Lu SC. Antioxidants in the treatment of chronic liver diseases: why is the efficacy evidence so weak in humans?[J]. Hepatology, 2008, 48(5): 1359-1361. [27] Eid S, Abou-Kheir W, Sabra R, et al. Involvement of renal cytochromes P450 and arachidonic acid metabolites in diabetic nephropathy[J]. J Biol Regul Homeost Agents, 2013, 27(3): 693-703. [28] Li NN, Zhao YH, Yue YY, et al. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance[J]. Biochem Biophys Res Commun, 2016, 478(1): 46-52. [29] Dannawi M, Riachi ME, Haddad AF, et al. Influence of intermittent fasting on prediabetes-induced neuropathy: insights on a novel mechanistic pathway[J]. Metabol Open, 2022, 14: 100175. doi:10.1016/j.metop.2022.100175. [30] Njeim R, Braych K, Ghadieh HE, et al. VEGF-A: anovel mechanistic link between CYP2C-derived EETs and Nox4 in diabetic kidney disease[J]. Diabetes, 2023, 72(7): 947-957. [31] Guo K, Ge J, Zhang C, et al. `Cadmium induced cardiac inflammation in chicken(Gallus gallus)via modulating cytochrome P450 systems and Nrf2 mediated antioxidant defense[J]. Chemosphere, 2020, 249: 125858. doi:10.1016/j.chemosphere.2020.125858. [32] Zarriello S, Tuazon JP, Corey S, et al. Humble beginnings with big goals: small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders[J]. Prog Neurobiol, 2019, 172: 23-39. doi:10.1016/j.pneurobio.2018.11.001. [33] Zhang J, Zhang M, Zhang WH, et al. Total flavonoids of Inula japonica alleviated the inflammatory response and oxidative stress in LPS-induced acute lung injury via inhibiting the sEH activity: insights from lipid metabolomics[J]. Phytomedicine, 2022, 107: 154380. doi:10.1016/j.phymed.2022.154380. [34] Wagner K, Gilda J, Yang J, et al. Soluble epoxide hydrolase inhibition alleviates neuropathy in Akita(Ins2 Akita)mice[J]. Behav Brain Res, 2017, 326: 69-76. doi:10.1016/j.bbr.2017.02.048. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26. |
[3] | 张嘉颖,宿荣允,王英惠,王洪刚,柳刚. ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤[J]. 山东大学学报 (医学版), 2023, 61(4): 1-9. |
[4] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[5] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[6] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[7] | 黄辉宁,杜娟娟,孙燚,侯应龙,高梅. 硫化氢通过glutaredoxin-1调节氧化应激减轻急性阻塞性睡眠呼吸暂停诱发房颤的机制[J]. 山东大学学报 (医学版), 2022, 60(1): 1-5. |
[8] | 李敏启,杜娟,杨盼盼,寇雨莹,柳珊珊. 氧化应激调控骨质疏松症的研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 16-24. |
[9] | 刘淑丹,张飞燕,郭松林,梁雪云,陈冬梅. 氧化苦参碱改善缺氧缺血引起的HaCaT细胞氧化应激损伤[J]. 山东大学学报 (医学版), 2021, 59(3): 26-34. |
[10] | 向琳,陈腊梅,王婧雯,李海铭,李浩宇,王菊,范玉琛,王凯. 30名健康志愿者饮用饮久舒对肝代谢酶的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 81-85. |
[11] | 李艳,孙凤娇,张天然,王雨心,张正铎,高希宝. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报 (医学版), 2020, 58(5): 98-106. |
[12] | 刘崇东,娄彤,董靖. 子宫内膜异位症恶变[J]. 山东大学学报 (医学版), 2019, 57(6): 27-32. |
[13] | 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26. |
[14] | 张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞,方雨晴,刘小民,马高亭,张小雨,张霄,王敏,李秀华. 艾地苯醌联合治疗帕金森病疗效的临床观察[J]. 山东大学学报 (医学版), 2019, 57(4): 34-41. |
[15] | 张秀玲,张磊,刘丹,梁江久. 山东汉族人群ApoE基因多态性与房颤的相关性[J]. 山东大学学报 (医学版), 2018, 56(3): 79-84. |
|