您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (4): 68-75.doi: 10.6040/j.issn.1671-7554.0.2021.1619

• • 上一篇    

CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值

袁宏涛1,纪淙山1,2,康冰1,秦松楠1,于鑫鑫1,高琳2,王锡明1,2   

  • 发布日期:2022-04-22
  • 通讯作者: 王锡明. E-mail:wangxm369@163.com
  • 基金资助:
    国家自然科学基金(81871354,81571672);山东省泰山学者专项经费;山东第一医科大学学术提升计划(2019QL023);国家自然科学基金委员会青年项目(81901740)

Diagnostic value of CT radiomics nomogram for adrenal lipid-poor adenoma and nodular hyperplasia

YUAN Hongtao1, JI Congshan1,2, KANG Bing1, QIN Songnan1, YU Xinxin1, GAO Lin2, WANG Ximing1,2   

  1. 1. Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Published:2022-04-22

摘要: 目的 探讨基于CT平扫图像建立的影像组学诺模图对鉴别肾上腺乏脂腺瘤和肾上腺结节样增生的诊断价值。 方法 回顾性分析经病理学检查证实的44例肾上腺乏脂腺瘤与55例肾上腺结节样增生患者。从CT平扫图像提取并筛选出有诊断价值的影像组学参数,计算影像组学评分构建影像组学模型,分析筛选临床因素构建临床模型并联合临床因素和影像组学模型构建诺模图。分析比较上述3种模型的诊断效能。 结果 13项影像组学参数被筛选用于建立影像组学诊断模型。影像组学模型验证集曲线下面积为0.91,敏感度和特异度分别为84.6%和81.3%。单因素及多因素二分类Logistic回归分析结果显示,肾素和最大径为鉴别二者的独立影响因子,临床模型验证集曲线下面积为0.57, 敏感度和特异度分别为53.9%和68.8%。诺模图验证集AUC为0.94,敏感度和特异度分别为84.6%和93.8%。影像组学模型及诺模图的诊断效能均大于临床模型(z=3.188,P<0.001;z=3.409,P<0.001)。 结论 基于CT平扫图像的影像组学诺模图对鉴别肾上腺乏脂腺瘤和肾上腺结节样增生有较高的诊断效能,具有较高的临床价值。

关键词: 肾上腺乏脂腺瘤, 肾上腺增生, 体层摄影技术, 影像组学, 诺模图

Abstract: Objective To investigate the value of radiomics nomogram based on non-contrast CT in the differential diagnosis of adrenal lipid-poor adenoma and adrenal nodular hyperplasia. Methods Clinical data of 44 patients with adrenal lipid-poor adenoma and 55 with nodular hyperplasia confirmed by pathology were retrospectively analyzed. Radiomics features extracted from non-contrast CT and radiomics score(Radscore)were calculated to construct a radiomics model. Clinical factors were selected to construct a clinical model. Radiomics nomogram was constructed combining clinical factors and Radscore. The diagnostic values of the three models were compared. Results A total of 13 features were selected to establish the radiomics model. The area under the receiver operator characteristic curve(AUC), sensitivity and specificity of the radiomics model were 0.91, 84.6% and 81.3%, respectively. Both univariate and multivariate Logistic regression showed that renin and maximum diameter were the independent influencing factors in the differential diagnosis of adrenal lipid-poor adenoma and adrenal nodular hyperplasia. The AUC, sensitivity and specificity of the clinical model were 0.57, 53.9% and 68.8%. respectively. The AUC, sensitivity and specificity of the radiomics nomogram were 0.94, 84.6% and 93.8%, respectively. The diagnostic efficiency of the radiomics model and nomogram was significantly higher than that of the clinical model(z=3.188, P<0.001; z=3.409, P<0.001). Conclusion The radiomics nomogram based on non-contrast CT has a high efficiency in the differential diagnosis of adrenal lipid-poor adenoma and nodular hyperplasia.

Key words: Adrenal lipid-poor adenoma, Adrenal nodular hyperplasia, CT, Radiomics, Nomogram

中图分类号: 

  • R574
[1] Song JH, Chaudhry FS, Mayo-Smith WW. The incidental adrenal mass on CT: prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy [J]. AJR Am J Roentgenol, 2008, 190(5): 1163-8.
[2] 项林爱, 胡红杰, 王健, 等. 无脂性肾上腺腺瘤和无囊变嗜铬细胞瘤的CT鉴别诊断[J]. 临床放射学杂志, 2019, 38(3): 484-488. XIANG Linai, HU Hongjie, WANG Jian, et al. Differentiation the lipid-none adrenal adenoma from non-necrosis pheochromocytoma with CT [J]. Journal of Practical Radiology, 2019, 38(3): 484-488.
[3] 刘刚, 王坤利, 田野, 等. 原发性醛固酮增多症手术治疗的研究进展[J]. 中华泌尿外科杂志, 2022, 43(1): 75-78. LIU Gang, WANG Kunli, TIAN Ye, et al. The research progress in surgical treatment of primary hyperaldosteronism [J]. Chin J Urol, 2022, 43(1): 75-78.
[4] 刘欣, 郑伊能, 钟毅, 等. CT纹理分析对醛固酮腺瘤与皮质醇腺瘤的鉴别诊断价值[J]. 中国中西医结合影像学杂志, 2021, 19(1): 60-64. LIU Xin, ZHENG Yineng, ZHONG Yi, et al. Differential diagnostic value of aldosterone-producing adenoma and cortisol-producing adenoma by CT texture analysis [J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2021, 19(1): 60-64.
[5] 何竑超, 祝宇, 何威, 等. 腹腔镜下肾上腺部分切除术治疗库欣综合征肾上腺腺瘤:单中心121例临床分析[J]. 中华泌尿外科杂志, 2017, 38(4): 244-247. HE Hongchao, ZHU Yu, HE Wei, et al. Clinical investigation on minimal invasive surgery for Cushing syndrome caused by adrenocortical adenoma: experience of 121 cases in a single center [J]. Chinese Journal of Urology, 2017, 38(4): 244-247.
[6] 宋颖, 罗婷, 肖明, 等. 单侧肾上腺增生性原发性醛固酮增多症的临诊应对[J]. 中华内分泌代谢杂志, 2018, 34(12): 1037-1041. SONG Ying, LUO Ting, XIAO Ming, et al. Approach to a patient with primary aldosteronism caused by unilateral adrenal hyperplasia [J]. Chinese Journal of Endocrinology and Metabolism, 2018, 34(12): 1037-1041.
[7] Panda A, Das CJ, Dhamija E, et al. Adrenal imaging(Part 1): Imaging techniques and primary cortical lesions [J]. Indian J Endocrinol Metab, 2015, 19(1): 8-15.
[8] Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability [J]. Psychological Bulletin, 1979, 86(2): 420-428.
[9] Torresan F, Crimì F, Ceccato F, et al. Radiomics: a new tool to differentiate adrenocortical adenoma from carcinoma [J]. BJS Open, 2021, 5(1): zraa061.
[10] 郭凯, 任帅, 刘绍伟, 等. CT动态增强鉴别肾上腺乏脂肪腺瘤与肾上腺结节样增生的价值[J]. 医学影像学杂志, 2020, 30(4): 632-636. GUO Kai, REN Shuai, LIU Shaowei, et al. The value of CT dynamic contrast-enhanced scanning in distinguishing lipid-poor adrenal adenoma and adrenal nodular hyperplasia [J]. Journal of Medical Imaging, 2020, 30(4): 632-636.
[11] Park SY, Park BK, Park JJ, et al. Differentiation of adrenal hyperplasia from adenoma by use of CT densitometry and percentage washout [J]. AJR Am J Roentgenol, 2016, 206(1): 106-112.
[12] 蔡明珠. 能谱CT多物质参数在肾上腺结节性增生与乏脂性腺瘤中的诊断价值[D]. 郑州:郑州大学, 2019.
[13] 张振红, 解丙坤, 洒盼盼, 等. CT增强扫描碘对比剂不良反应的临床表现分析[J]. 医学影像学杂志, 2020, 30(9): 1718-1720. ZHANG Zhenhong,XIE Bingkun,SA Panpan, et al. Analysis of clinical manifestations of adverse reactions of iodine contrast medium in enhanced CT scan [J]. Journal of Medical Imaging, 2020, 30(9): 1718-1720.
[14] Young WF, Stanson AW, Thompson GB, et al. Role for adrenal venous sampling in primary aldosteronism [J]. Surgery, 2004, 136(6): 1227-1235.
[15] 杨蕾, 张在先, 国建林, 等. 基于增强CT影像组学模型预测肺腺癌ALK突变[J]. 中国医学影像学杂志, 2021, 29(5): 454-458. YANG Lei, ZHANG Zaixian, GUO Jianlin, et al. Radiomics models based on enhanced CT for predicting ALK mutation in lung adenocarcinoma [J]. Chinese Journal of Medical Imaging, 2021, 29(5): 454-458.
[16] He K, Zhang ZT, Wang ZH, et al. A clinical-radiomic nomogram based on unenhanced computed tomography for predicting the risk of aldosterone-producing adenoma [J]. Frontiers in Oncology, 2021, 11: 634879. doi:10.3389/fonc.2021.634879
[17] Davnall F, Yip CSP, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? [J]. Insights into Imaging, 2012, 3(6): 573-589.
[18] Yi X, Guan X, Zhang Y, et al. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma: a predictive, preventive and personalized medical approach in adrenal incidentalomas [J]. EPMA J, 2018, 9(4): 421-429.
[19] Kong J, Zheng J, Wu J, et al. Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation[J]. J Transl Med, 2022, 20(1): 31.
[20] Yu H, Parakh A, Blake M, et al. Texture analysis as a radiomic marker for differentiating benign from malignant adrenal tumors [J]. J Comput Assist Tomogr, 2020, 44(5): 766-771.
[21] Akai H, Yasaka K, Kunimatsu A, et al. Application of CT texture analysis to assess the localization of primary aldosteronism[J]. Sci Rep, 2020, 10(1): 472.
[22] Daye D, Staziaki P, Furtado V, et al. CT Texture analysis and machine learning improve post-ablation prognostication in patients with adrenal metastases: a proof of concept [J]. Cardiovasc Inter Rad, 2019, 42(12): 1771-1776.
[23] Karahaliou A, Vassiou K, Arikidis N, et al. Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis [J]. Brit J Radiol, 2010, 83(988): 296-309.
[24] 常富江, 张雪培, 王声政, 等. 醛固酮腺瘤患者血浆醛固酮、肾素水平分析[J]. 检验医学, 2019, 34(8): 722-725. CHANG Fujiang, ZHANG Xuepei, WANG Shengzheng, et al. Plasma aldosterone and renin levels in patients with aldosterone adenoma[J]. Laboratory Medicine, 2019, 34(8): 722-725.
[25] 李蓉. 肾上腺软组织密度肿块的影像学诊断相关研究[D]. 天津:天津医科大学, 2019.
[1] 宋珍珍,孙小玲,李海鸥,王芳,张冉,于德新. 120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值[J]. 山东大学学报 (医学版), 2021, 59(11): 53-60.
[2] 高琳,顾慧,康冰,于鑫鑫,张帅,王箬芃,王锡明. CT平扫和增强图像对480例患者肺磨玻璃结节的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 68-74.
[3] 刘贺,刘福强,侯新国,陈丽. CYP11B1基因新突变致11β-羟化酶缺陷症1例家系研究[J]. 山东大学学报(医学版), 2017, 55(9): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30 -37 .
[2] 邵娜,殷昊,李亚冉,张保坤,黄伟伟,鲁珊珊,唐吉友. Suvorexant改善慢性睡眠剥夺小鼠学习记忆损害的机制探讨[J]. 山东大学学报 (医学版), 2022, 60(4): 17 -23 .
[3] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24 -29 .
[4] 徐歌,李青,张灿灿,田永杰. 子宫腺肌病组织及原代细胞中PARP-1、HIF-1α的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(4): 55 -61 .
[5] 赵海龙,王皓,方雨晴,毛飞,赵张宁,田祥奇,徐新荣,王敏,李秀华. 增服艾地苯醌对34例帕金森病抑郁患者的疗效观察[J]. 山东大学学报 (医学版), 2022, 60(4): 38 -44 .
[6] 李鸿皓,于晶,陈亚丽,郭守刚. 20例NMOSD患者CD4+CD25+FoxP3+调节性T细胞数量和FoxP3 mRNA的表达水平[J]. 山东大学学报 (医学版), 2022, 60(4): 50 -54 .
[7] 杨丛品,罗卓野,许秀华,李爱民,郝桂敏. 河北省某医院体检3 512例育龄女性生育选择及压力现状[J]. 山东大学学报 (医学版), 2022, 60(4): 62 -67 .
[8] 刘丽雯,马俊,李沛铮,张秀芳,刘艺鸣. 128例帕金森病照料者负担及影响因素[J]. 山东大学学报 (医学版), 2022, 60(4): 45 -49 .
[9] 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 0, (): 76 -81 .
[10] 孔昕欣,孙书珍,李倩,陈元,周爱华,王莉,姚秀俊. 抗H因子抗体阳性溶血尿毒综合征7例分析[J]. 山东大学学报 (医学版), 0, (): 82 -86 .