您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (10): 70-76.doi: 10.6040/j.issn.1671-7554.0.2021.0774

• 临床医学 • 上一篇    下一篇

CT平扫和增强图像对480例患者肺磨玻璃结节的诊断价值

高琳1,顾慧2,康冰2,于鑫鑫2,张帅1,王箬芃1,王锡明1,2   

  1. 1. 山东第一医科大学附属省立医院影像科, 山东 济南 250021;2. 山东大学附属省立医院影像科, 山东 济南 250021
  • 发布日期:2021-10-15
  • 通讯作者: 王锡明. E-mail:wxming369@163.com
  • 基金资助:
    国家自然科学基金(81871354,81571672);山东省泰山学者专项经费;山东第一医科大学学术提升计划(2019QL023);国家自然科学基金委员会青年项目(81901740)

Diagnostic value of unenhanced and enhanced CT images in ground glass pulmonary nodules

GAO Lin1, GU Hui2, KANG Bing2, YU Xinxin2, ZHANG Shuai1, WANG Ruopeng1, WANG Ximing1,2   

  1. 1. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China;
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Published:2021-10-15

摘要: 目的 探讨CT平扫及增强扫描对肺磨玻璃结节(GGN)良恶性及侵袭性的预测价值。 方法 回顾性分析2018年1月至2020年12月经手术病理证实、CT表现为GGN的480例患者,共540个GGN。根据病理分为良性组、非侵袭组与侵袭组,其中良性组57个、非侵袭组(不典型腺瘤样增生、原位腺癌、微浸润性腺癌)310个、侵袭组(浸润性腺癌)173个。记录一般资料(年龄、性别、吸烟史、肿瘤家族史、发病部位)、磨玻璃成分占比、形态、边界、分叶、毛刺、空泡征、支气管异常征、内部血管征、胸膜牵拉征、最长径、最短径、平扫CT值、增强动脉期CT值、静脉期CT值、强化程度ΔCTA-N(CT值动脉期-CT值平扫)、ΔCTV-N(CT值静脉期-CT值平扫)。采用ANOVA单因素方差分析、Kruskal-Wallis H检验、Pearson χ2检验评估计量资料及计数资料,组内相关系数(ICC)评估测量重复性。分别以结节良恶性及结节侵袭性为因变量,以有关因素为自变量进行二分类Logistic回归分析,并对有统计学意义的参数进行ROC曲线分析,计算曲线下面积(AUC)以及病理学诊断为金标准的诊断指标评估(包括临界值、灵敏度及特异度)。 结果 良性组、非侵袭组、侵袭组之间各结节定性及定量参数比较差异均有统计学意义(P<0.001)。Logistic回归分析结果显示,良性组与非侵袭组、侵袭组之间各结节磨玻璃成分占比、内部血管征、平扫CT值及ΔCTV-N差异有统计学意义(P<0.001);ΔCTV-N的ROC曲线下面积(AUC)为0.874,灵敏度为0.747,特异度为0.877;侵袭组与非侵袭组之间各结节最长径、分叶、边界、血管异常征差异有统计学意义,其中最长径AUC为0.851,灵敏度为0.746,特异度为0.813。 结论 CT平扫结合增强扫描对结节良恶性及侵袭性的预测具有重要意义,其中GGN强化程度ΔCTV-N对良恶性的预测效能更高,最长径对侵袭性的预测效能更高。

关键词: 肺磨玻璃结节, 体层摄影技术, X线计算机, 病理学

Abstract: Objective To explore the predictive value of unenhanced CT scan and contrast-enhanced CT scan in benign, malignant and invasive ground glass pulmonary nodules(GGN). Methods The CT images of 480 patients with 540 GGNs who underwent lung curative resection during Jan. 2018 and Dec. 2020 were retrospectively analyzed, including 57 GGNs in the benign group, 310 in the non-invasive group(AAH+AIS+MIA), and 173 in the invasive group(MIA). The general data(age, gender, smoking history, family history of lung cancer, site), percentage of ground glass component, morphology, boundary, lobulation, burr, vacuolar sign, bronchial abnormality sign, internal vessel sign, pleural traction sign, longest diameter, shortest diameter, unenhanced CT value, CT values on enhancement in arterial phase, CT values on enhancement in venous phase, and degree of enhancement(ΔCTA-N, ΔCTV-N)were analyzed with one-way ANOVA, Kruskal-Wallis H test and Pearson χ2 test. Intra-group correlation coefficient(ICC)was used to evaluate the repeatability of measurement. Logistic regression analysis was performed by taking the nature of GGN(tumor or not)or invasiveness as the dependent variables, relative factors as independent variables. ROC curve analysis and the area under the curve(AUC)were calculated and the diagnostic criteria(including critical value, sensitivity and specificity)were evaluated based on the gold standard of pathological diagnosis. Results There were significant differences in the qualitative and quantitative parameters of nodules among the three groups(P<0.001). Logistic regression analysis showed statistically significant differences in the proportion of ground glass components, internal vessel sign, unenhanced CT values and degree of enhancement ΔCTV-N(P<0.001). ROC curve showed AUC, sensitivity and specificity of ΔCTV-N were 0.874, 0.747, and 0.877, respectively. There were significant differences in the longest diameter, lobulation, boundary and vascular abnormality of the nodules between the invasive and non-invasive groups. ROC curve showed that the longest diameter was an independent predictor(AUC=0.851, sensitivity=0.746, specificity=0.813). Conclusion Unenhanced CT scan combined with enhanced CT scan is of great significance in predicting benign, malignant and invasive GGNs. The enhancement degree of GGN(ΔCTV-N)is very effective in predicting benign and malignant GGNs, and the longest diameter is very effective in predicting invasiveness.

Key words: Pulmonary ground glass nodules, Tomography, X-ray computed, Pathology

中图分类号: 

  • R445.3
[1] Gao C, Xiang P, Ye J, et al. Can texture features improve the differentiation of infiltrative lung adenocarcinoma appearing as ground glass nodules in contrast-enhanced CT? [J]. Eur J Radiol, 2019, 117: 126-131. doi: 10.1016/j.ejrad.2019.06.010.
[2] Meng Y, Liu CL, Cai Q, et al. Contrast analysis of the relationship between the HRCT sign and new pathologic classification in small ground glass nodule-like lung adenocarcinoma [J]. Radiol Med, 2019, 124(1): 8-13.
[3] Qi LL, Wu BT, Tang W, et al. Long-term follow-up of persistent pulmonary pure ground-glass nodules with deep learning-assisted nodule segmentation [J]. Eur Radiol, 2020, 30(2): 744-755.
[4] World Health Organization(2021). WHO Classification of Tumours of the Lung [EB/OL].(2021-01)[2021-05-10]. https://tumourclassification.iarc.who.int.
[5] She Y, Zhang L, Zhu H, et al. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules [J]. Eur Radiol, 2018, 28(12): 5121-5128.
[6] Yagi T, Yamazaki M, Ohashi R, et al. HRCT texture analysis for pure or part-solid ground-glass nodules: distinguishability of adenocarcinoma in situ or minimally invasive adenocarcinoma from invasive adenocarcinoma J]. Jpn J Radiol, 2018, 36(2): 113-121.
[7] Shao X, Niu R, Jiang Z, et al. Role of PET/CT in management of early lung adenocarcinoma [J]. AJR Am J Roentgenol, 2020, 214(2): 437-445.
[8] 张国桢,郑向鹏,李铭. 微小肺癌: 影像诊断与应对策略[M]. 北京:人民军医出版社,2015: 82-89.
[9] Gao F, Sun Y, Zhang G, et al. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions [J]. Br J Radiol, 2019, 92(1094): 20180204. doi:10.1259/bjr.20180204.
[10] 刘莉, 吴宁, 周丽娜, 等. 亚实性结节血管及支气管异常与肺腺癌类病变侵袭性的相关性分析[J]. 中华放射学杂志, 2019, 53(11): 987-991. LIU Li, WU Ning, ZHOU Lina, et al. The correlations between vascular and bronchial abnormality on high resolution CT and the invasiveness of lung adenocarcinoma in subsolid nodules [J]. Chinese Journal of Radiology, 2019, 53(11): 987-991.
[11] Liu G, Li M, Li G, et al. Assessing the blood supply status of the focal ground-glass opacity in lungs using spectral computed tomography [J]. Korean J Radiol, 2018, 19(1): 130-138.
[12] Kitazawa S, Saeki Y, Kobayashi N, et al. Three-dimensional mean CT attenuation value of pure and part-solid ground-glass lung nodules may predict invasiveness in early adenocarcinoma [J]. Clin Radiol, 2019, 74(12): 944-949.
[13] Zhan Y, Peng X, Shan F, et al. Attenuation and morphologic characteristics distinguishing a ground-glass nodule measuring 5-10 mm in diameter as invasive lung adenocarcinoma on thin-slice CT [J]. Am J Roentgenol, 2019, 213(4): W162-W170.
[14] Yang HH, Lv YL, Fan XH, et al. Factors distinguishing invasive from pre-invasive adenocarcinoma presenting as pure ground glass pulmonary nodules [J]. Radiat Oncol, 2020, 15(1): 186. doi:10.1186/s13014-020-01628-x.
[15] 张为, 李小虎, 杜丹丹, 等. 纯磨玻璃结节的CT特征及定量分析对肺腺癌病理分类的预测价值[J]. 中国医学影像学杂志, 2018, 26(9): 658-663. ZHANG Wei, LI Xiaohu, DU Dandan, et al. CT features and quantitative analysis of pure ground glass nodules in the pathological grading and prediction of lung adenocarcinoma [J]. Chinese Journal of Medical Imaging, 2018, 26(9): 24-29.
[16] Lu Tao, Chen Yunbin, LIU Xiangyi. Comparative analysis of HRCT image features and histopathology in pulmonary ground glass nodules [J]. Chin J CT & MRI, 2017, 15(7): 40-43.
[17] Meng Y, Liu CL, Cai Q, et al. Contrast analysis of the relationship between the HRCT sign and new pathologic classification in small ground glass nodule-like lung adenocarcinoma [J]. Radiol Med, 2019, 124(1): 8-13.
[1] 赵立星 宋代辉 魏魁杰 殷恺. 颞下颌关节骨关节病动物模型的建立[J]. 山东大学学报(医学版), 2209, 47(6): 25-27.
[2] 王新,侯莹月,郭泾. 12~15岁青少年不同矢状骨面型上气道形态的差异[J]. 山东大学学报 (医学版), 2022, 60(8): 79-83.
[3] 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75.
[4] 杨岫岩,张建瑜. 从风湿免疫角度谈生殖免疫的一些思路[J]. 山东大学学报 (医学版), 2021, 59(8): 20-23.
[5] 蔡凡凡,纪淙山,杨世锋,顾慧,袁宪顺,刘洪武,秦松楠,高琳,王箬芃,王锡明. 第三代双源CT在房颤患者冠状动脉CT血管成像中的应用[J]. 山东大学学报 (医学版), 2021, 59(2): 14-18.
[6] 李靖,路爱军,胡怀强. 非系统性血管炎性神经病1例报告[J]. 山东大学学报 (医学版), 2020, 1(9): 106-109.
[7] 程召平,段艳华,姚金坤,李岩,顾慧,袁宪顺,刘斌,毕万利,宋照亮,聂佩,陈月芹,孙占国,刘善平,王鲁光,唐忠仁,魏相磊,董亮,王春亭,王锡明. 105例新型冠状病毒肺炎胸部CT影像学特征——山东省多中心回顾性分析[J]. 山东大学学报 (医学版), 2020, 58(5): 38-45.
[8] 雷坤阳,王旭,马明,孙庭. 后肾腺瘤的诊断和治疗:单中心经验[J]. 山东大学学报 (医学版), 2020, 58(1): 73-76.
[9] 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75.
[10] 张丽红,李娴,王林省,李宏磊,李磊. 含脂肪节细胞神经瘤的影像学表现与病理对照[J]. 山东大学学报 (医学版), 2018, 56(12): 73-78.
[11] 王玉红,张丽红,王林省,陈月芹,王彦辉,王皆欢,李传福. 消化道颗粒细胞瘤的影像学表现[J]. 山东大学学报(医学版), 2017, 55(8): 66-70.
[12] 李扬,何闯,陈玉潇,杨丽,李良山,李廷源,黄学全. 放射性125I粒子植入近距离治疗长骨转移瘤的临床疗效[J]. 山东大学学报(医学版), 2017, 55(2): 50-54.
[13] 张希英,翟春颜,李劲松,韩博. 中国尤文肉瘤患者EZH2蛋白表达与临床病理学参数及预后的关系[J]. 山东大学学报(医学版), 2017, 55(2): 84-91.
[14] 刘朝娣,邓凯,靳先文,宋歌声,张成琪. 能谱CT对卵巢原发良恶性肿瘤的鉴别[J]. 山东大学学报 (医学版), 2017, 55(12): 43-50.
[15] 张佩佩,刘德泉,王蓓,赫淑倩,李菲,丁红宇,孙洪军. 非肿块型乳腺单纯性导管内癌声像图特征及病理学相关分析[J]. 山东大学学报(医学版), 2017, 55(11): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[5] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[6] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[7] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[8] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[9] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[10] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .