您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (10): 59-69.doi: 10.6040/j.issn.1671-7554.0.2021.0367

• 临床医学 • 上一篇    下一篇

长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响

杜甜甜1,2,李娟1,2,赵颖慧1,2,段伟丽1,2,王景1,2,王允山1,2,杜鲁涛1,2,王传新1,2   

  1. 1.山东大学第二医院检验医学中心 山东大学齐鲁医学院, 山东 济南 250033;2. 山东省肿瘤标志物检测工程实验室, 山东 济南 250033
  • 发布日期:2021-10-15
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(2019GHZ003,82002228);山东省重点研发计划(2020CXGC011304);山东省自然科学基金(ZR2020QH280)

Expression profiles of long non-coding RNA LINC02474 and effects on cell proliferation in colorectal cancer

DU Tiantian1,2, LI Juan1,2, ZHAO Yinghui1,2, DUAN Weili1,2, WANG Jing1,2, WANG Yunshan1,2, DU Lutao1,2, WANG Chuanxin1,2   

  1. 1. Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China;
    2. Tumor Marker Detection Engineering Laboratory of Shandong Provine, Jinan 250033, Shandong, China
  • Published:2021-10-15

摘要: 目的 探讨长链非编码RNA(lncRNA)LINC02474在结直肠癌组织及循环外泌体中的表达特征及其对结直肠癌发生发展的影响。 方法 采用实时荧光定量PCR(qRT-PCR)检测LINC02474在30例结直肠癌患者组织及128例结直肠癌患者和128例健康对照者血清中的相对表达量;使用电子显微镜检测分离所得外泌体的形态特征;使用纳米粒子跟踪分析(NTA)检测分离所得外泌体的粒径大小;Western blotting检测外泌体表面标志物的表达;CCK-8实验、平板克隆形成实验和实时细胞分析系统(RTCA)检测干扰LINC02474后DLD-1细胞的增殖;采用trans基因预测等生物信息学方法分析预测获得LINC02474的潜在靶基因。 结果 qRT-PCR检测结果显示,LINC02474在结直肠癌组织中呈高表达,差异有统计学意义(U=213.0, P<0.001)。电子显微镜结果显示,分离所得外泌体呈盘状囊泡结构,大小分布集中于96.9 nm处,且表达表面标志物CD9、CD63和TSG101。CCK-8实验、平板克隆形成实验和RTCA检测结果表明,干扰LINC02474的表达可以抑制结直肠癌细胞的增殖及成瘤能力,差异有统计学意义(CCK-8实验:t=2.640, P=0.046;平板克隆形成实验:t=2.745, P=0.016;RTCA检测:t=28.44, P<0.001)。KEGG和GO富集分析结果显示,LINC02474的潜在靶基因多富集在mTOR及MAPK等信号通路。 结论 LINC02474在结直肠癌患者组织和血清外泌体中呈高表达特征,干扰其表达可以抑制结直肠癌细胞的增殖及成瘤能力。

关键词: 结直肠癌, 长链非编码RNA, 外泌体, 诊断, 细胞增殖

Abstract: Objective To explore the expression profiles of long non-coding RNA LINC02474 in tissues and circulating exosomes of colorectal cancer(CRC)and the effects of LINC02474 on cell proliferation. Methods The relative expression of LINC02474 in tissues of 30 CRC patients and serum samples from 128 CRC patients and 128 healthy donors by quantitative real-time PCR(qRT-PCR)was obtained. Morphology of the exosomes was detected by electron microscope. The size was analyzed by nanoparticle tracking analysis(NTA). Expression of exosomes markers were shown by Western blotting. The DLD-1 cell proliferation after deletion of LINC02474 was screened by CCK-8 assays, colony formation assays and the real-time cell analysis(RTCA)system. And the potential target genes were acquired by bioinformatics prediction. Results TCGA analysis and qRT-PCR results from tissues of 30 CRC patients and serum samples from 128 CRC patients and 128 healthy donors have shown that LINC02474 was highly expressed in CRC tissues samples(U=213.0, P<0.001). Morphology of the exosomes was disk-like vesicles which detected by electron microscope. The size of the exosomes mainly enriched in 96.9 nm which was analyzed by NTA. CD9, CD63 and TSG101 were expressed in the surface of the exosomes which shown by Western blotting. Deletion of LINC02474 inhibited proliferation of CRC cells, which detected by CCK-8 assays, colony formation assays and the RTCA system(CCK-8 assays: t=2.640, P=0.046;colony formation assays: t=2.745, P=0.016; RTCA system: t=28.44, P<0.001). And there were more target genes enriched in the mTOR and MAPK signaling pathway through KEGG and GO analysis. Conclusion LINC02474 is highly expressed in CRC tissues and serum samples, and its knockdown restrains the cell proliferation.

Key words: Colorectal cancer, Long non-coding RNAs, Exosomes, Diagnosis, Cell proliferation

中图分类号: 

  • R735-7
[1] Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.
[2] Willauer AN, Liu Y, Pereira AAL, et al. Clinical and molecular characterization of early-onset colorectal cancer[J]. Cancer, 2019, 125(12): 2002-2010.
[3] Steffen P, Li J, Chandra J, et al. Molecular features of lymph node metastasis in T1/2 colorectal cancer from formalin-fixed paraffin-embedded archival specimens[J]. J Proteome Res, 2021, 20(2): 1304-1312.
[4] Burnett-Hartman AN, Lee JK, Demb J, et al. An update on the epidemiology, molecular characterization, diagnosis, and screening strategies for early-onset colorectal cancer[J]. Gastroenterology, 2021, 160(4): 1041-1049.
[5] Meng N, Chen M, Chen D, et al. Small protein hidden in lncRNA LOC90024 promotes "cancerous" RNA splicing and tumorigenesis[J]. Adv Sci(Weinh), 2020, 7(10): 1903233. doi: 1903210.1901002/advs.201903233.
[6] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629-641.
[7] Shi X, Sun M, Liu H, et al. Long non-coding RNAs: a new frontier in the study of human diseases[J]. Cancer Lett, 2013, 339(2): 159-166.
[8] Tachiwana H, Saitoh N. Nuclear long non-coding RNAs as epigenetic regulators in cancer[J]. Curr Med Chem, 2021, 28(25):5098-5109.
[9] Hu A, Hong F, Li D, et al. Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression[J]. J Transl Med, 2021, 19(1): 95. doi: 10.1186/s12967-12020-02682-12965.
[10] Melixetian M, Bossi D, Mihailovich M, et al. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation[J]. EMBO Rep, 2021, 22(3): e50852. doi: 50810.15252/embr.202050852.
[11] Nam GH, Choi Y, Kim GB, et al. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy[J]. Adv Mater, 2020, 32(51): e2002440. doi: 2002410.2001002/adma.202002440.
[12] Exosome profiling pinpoints cancer type[J]. Cancer Discov, 2020, 10(11): 1619. doi: 1610.1158/2159-8290.CD-NB2020-1083.
[13] Khomtchouk BB, Hennessy JR, Wahlestedt C. shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics[J]. PLoS One, 2017, 12(5): e0176334. doi: 0176310.0171371/journal.pone.0176334.
[14] Akimoto N, Ugai T, Zhong R, et al. Rising incidence of early-onset colorectal cancer-a call to action[J]. Nat Rev Clin Oncol, 2020, 18(4): 230-243.
[15] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[16] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
[17] Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822): 860-921.
[18] Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118.
[19] Pefanis E, Wang J, Rothschild G, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity[J]. Cell, 2015, 161(4): 774-789.
[20] Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29(5): 653-668.
[21] Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer-implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15(10): 617-638.
[22] 常文婧, 李冬, 孙祖俊. 外泌体长链非编码RNA:肿瘤分子诊断新型标志物[J]. 国际检验医学杂志, 2020, 41: 1793-1799.
[23] Guo X, Lv X, Ru Y, et al. Circulating exosomal gastric cancer-associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study[J]. JAMA Surg, 2020, 155(7): 572-579.
[24] Lin LY, Yang L, Zeng Q, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer[J]. Mol Cancer, 2018, 17(1): 84. doi: 10.1186/s12943-12018-10834-12949.
[25] Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives[J]. Mol Cancer, 2016, 15(1): 39. doi: 10.1186/s12943-12016-10524-12944.
[26] Dong L, Lin W, Qi P, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(7): 1158-1166.
[27] Zeng ZL, Lu JH, Wang Y, et al. The lncRNA XIST/miR-125b-2-3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer[J]. Cancer Med, 2021, 10(7): 2423-2441.
[28] Si Z, Yu L, Jing H, et al. Oncogenic lncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis[J]. J Exp Clin Cancer Res, 2021, 40(1): 78. doi: 10.1186/s13046-13021-01882-13041.
[29] Wang X, Zhou J, Xu M, et al. A 15-lncRNA signature predicts survival and functions as a ceRNA in patients with colorectal cancer[J]. Cancer Manag Res, 2018, 10: 5799-5806. doi:10.2147/CMAR.S178732.
[30] Qian X, Li S, Yang Z, et al. The long non-coding RNA HLNC1 potentiates hepatocellular carcinoma progression via interaction with USP49[J]. J Clin Lab Anal, 2020, 34(11): e23462. doi: 23410.21002/jcla.23462.
[31] Li Y, Zeng C, Hu J, et al. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression[J]. J Hematol Oncol, 2018, 11(1): 89. doi: 10.1186/s13045-13018-10632-13042.
[32] Peng W, Zhang C, Peng J, et al. Lnc-FAM84B-4 acts as an oncogenic lncRNA by interacting with protein hnRNPK to restrain MAPK phosphatases-DUSP1 expression[J]. Cancer Lett, 2020, 494: 94-106. doi:10.1016/j.canlet.2020.08.036.
[33] Luo D, Li C, Wu L, et al. Advances of exosomes extraction and its mechanism in early diagnosis of lung cancer[J]. Zhongguo Fei Ai Za Zhi, 2020, 23(11): 999-1006.
[1] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[2] 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94.
[3] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[4] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[5] 查菁,郭婧,左秀丽. 少见类型肠梗阻病因病例报告1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(6): 130-132.
[6] 宋敏,周玉侠,高璐,刘娜,王菊,古晋,张艳萍. 1例6 q三体嵌合胎儿的产前诊断[J]. 山东大学学报 (医学版), 2022, 60(5): 109-113.
[7] 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95.
[8] 薛美娟,石艳,邵琳琳,王琳,张昀,张阿敏. 遗传性血栓性血小板减少性紫癜1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(3): 121-124.
[9] 王静,刘粉,曾荣,黄思源,许长娟,梁子婷,董亮. 以胸膜病变为特征的IgG4相关性肺疾病1例[J]. 山东大学学报 (医学版), 2022, 60(3): 114-116.
[10] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[11] 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42.
[12] 张雪,白改改,陶国伟,吴海芳,罗霞,刘培淑. 脐尿管未闭导致膀胱脱垂同时合并脐膨出的罕见病例1例[J]. 山东大学学报 (医学版), 2022, 60(2): 115-117.
[13] 潘鹏飞,徐立升,纪坤乾,王得翔,李玉. 以呼吸衰竭起病的线粒体肌病1例及文献回顾[J]. 山东大学学报 (医学版), 2022, 60(2): 54-59.
[14] 李祥泽,王先明,宋歌声,崔晶,孙凯,王皓晨,王天成,韩绍奇,田虎. 合并乙肝肝硬化的肝上皮样血管内皮瘤1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 89-95.
[15] 朱永村,赵修世,孙楠楠,姚志刚,周星辰,牟坤. 前列腺透明细胞腺癌3例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[4] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[5] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[6] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[7] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[8] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[9] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[10] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .