您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (11): 53-60.doi: 10.6040/j.issn.1671-7554.0.2021.0997

• 临床医学 • 上一篇    下一篇

120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值

宋珍珍1,2,孙小玲3,李海鸥1,王芳1,张冉4,于德新1   

  1. 1.山东大学齐鲁医院放射科, 山东 济南 250012;2. 济南市第三人民医院影像科, 山东 济南 250132;3.威海市文登区人民医院超声科, 山东 威海 264400;4.慧影医疗科技(北京)有限公司, 北京 100192
  • 发布日期:2021-11-11
  • 通讯作者: 于德新. E-mail:yudexin0330@sina.com

Value of MRI radiomics of glioma and peritumoral edema in evaluating tumor recurrence

SONG Zhenzhen1,2, SUN Xiaoling3, LI Haiou1, WANG Fang1, ZHANG Ran4, YU Dexin1   

  1. 1. Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Radiology, The Third Hospital of Jinan, Jinan 250132, Shandong, China;
    3. Department of Ultrasound, Wendeng District Peoples Hospital, Weihai 264400, Shandong, China;
    4. Huiying Medical Technology(Beijing)Co., Ltd., Beijing 100192, China
  • Published:2021-11-11

摘要: 目的 探讨胶质瘤及瘤周水肿(PTE)MRI影像组学在评估肿瘤复发中的价值。 方法 选取山东大学齐鲁医院2013年1月至2020年12月经术后病理证实的胶质瘤患者120例,包括55例复发和65例无复发患者,根据术前T2WI和T1WI增强图像对肿瘤和PTE进行三维容积感兴趣区勾画,并按照8∶2的比例分为训练组和验证组,分析两者及联合的组学特征与肿瘤复发的关系。使用受试者工作特征(ROC)曲线下面积(AUC)与准确性矩阵,比较和评价不同影像组学模型的训练结果。 结果 对于PTE,K临近法(KNN)分类器预测效能最好:训练组AUC值、敏感度、特异度分别为0.910、0.84、0.88,验证组分别为0.916、0.82、0.93。对于肿瘤,逻辑回归(LR)分类器预测效能最好:训练组AUC值、敏感度和特异度分别为0.777、0.69、0.67,验证组分别为0.758、0.82、0.92。当肿瘤+PTE联合时,逻辑回归(LR)分类器预测效能最好:训练组AUC值、敏感度、特异度为0.977、0.88、0.89,验证组则为0.841、0.73、0.83。 结论 胶质瘤PTE和肿瘤影像组学特征在预测胶质瘤术后复发方面具有一定的价值,其中PTE的KNN组学模型效能最佳。

关键词: 影像组学, 磁共振成像, 胶质瘤, 瘤周水肿, 术后复发

Abstract: Objective To explore the value of MRI radiomics of glioma and peritumoral edema(PTE)in evaluating the postoperative recurrence. Methods A total of 120 patients with glioma confirmed by postoperative pathology during Jan. 2013 and Dec. 2020 were retrospectively selected, including 55 cases with recurrence and 65 cases without recurrence. The tumor and PTE were delineated by three-dimensional volumetric regions of interest based on the preoperative T2WI and contrast enhanced T1WI images, which were divided into training group and validation group according to the ratio 8∶2. The relationship between tumor recurrence and the radiomic characteristics was analyzed. The receiver operating characteristic(ROC)curve was drawn, and the area under curve(AUC)and accuracy matrix were used to compare and evaluate the results of different radiomic models. Results For PTE, KNN classifier had the best prediction performance(AUC=0.910, sensitivity=0.84, specificity=0.88), while in the validation group, the AUC, sensitivity, and specificity were 0.916, 0.82 and 0.93, respectively. For tumor, LR classifier had the best prediction performance: the AUC, sensitivity and specificity of the training group were 0.777, 0.69 and 0.67, respectively, while in the validation group, they were 0.758, 0.82 and 0.92, respectively. In the model of tumor connected with PTE, LR classifier had the best prediction performance: the AUC, sensitivity and specificity of the training group were 0.977, 0.88 and 0.89, respectively, while in the validation group, they were 0.841, 0.73 and 0.83, respectively. Conclusion The MRI radiomic features of PTE and glioma are valuable to predict postoperative recurrence, and the KNN model of PTE has the best diagnostic efficacy.

Key words: Radiomics, Magnetic resonance imaging, Glioma, Peripheral edema, Postoperative recurrence

中图分类号: 

  • R455.2
[1] Ostrom QT, Patil N, Cioffi G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J]. Neuro Oncol, 2020, 22(12 suppl 2): 1-96.
[2] 中国医师协会神经外科医师分会脑胶质瘤专业委员会.胶质瘤多学科诊治(MDT)中国专家共识[J]. 中华神经外科杂志, 2018, 34(2): 113-118.
[3] Kim CS, Jung S, Jung TY, et al. Characterization of invading glioma cells using molecular analysis of leading-edge tissue[J]. J Korean Neurosurg Soc, 2011, 50(3):157-165. doi:10.3340/jkns.2011.50.3.157.
[4] Weller M, Cloughesy T, Perry JR, et al. Standards of care for treatment of recurrent glioblastoma: are we there yet? [J]. Neuro Oncol, 2013, 15(1): 4-27.doi:10.1093/neuonc/nos273.
[5] 景辉,张辉,秦丹蕾. 脑胶质瘤复发及治疗的影像学研究进展 [J].中国药物与临床杂志,2021,21(2):247-248.
[6] 潮布告, 高宇. PET/CT在脑胶质瘤术后放射治疗中的应用进展[J]. 中国微侵袭神经外科杂志, 2021, 26(1): 43-45. doi:10.11850/j.issn.1009-122X.2021.01.013.
[7] Shboul ZA, Alam M, Vidyaratne L, et al. Feature-guided deep radiomics for glioblastoma patient survival prediction[J]. Front Neurosci, 2019, 13: 966. doi:10.3389/fnins.2019.00966.
[8] Lin ZX. Glioma-related edema: new insight into molecular mechanisms and their clinical implications[J]. Chin J Cancer, 2013, 32(1): 49-52.
[9] 陈科宇, 江普查.瘤周水肿与人脑高级别胶质瘤预后的相关性[J].中国临床神经外科杂志,2021(5):352-353, 359. CHEN Keyu, JIANG Pucha.Correlation between peritumoral edema of high-grade glioma and patients prognoses[J]. Chinese Journal of Clinical Neurosurgery, 2021(5):352-353, 359.
[10] 郭翌, 周世崇, 余锦华, 等. 影像组学的前沿研究与未来挑战[J]. 肿瘤影像学, 2017, 26(2): 81-90. GUO Yi, ZHOU Shichong, YU Jinhua, et al. Advanced researches and future challenges of radiomics[J]. Oncoradiology, 2017, 26(2): 81-90.
[11] Leao DJ, Craig PG, Godoy LF, et al. Response assessment in neuro-oncology criteria for gliomas: practical approach using conventional and advanced techniques[J]. AJNR Am J Neuroradiol, 2020, 41(1): 10-20.
[12] 陈绪珠, 马军. 影像组学在脑胶质瘤中的研究进展[J]. 磁共振成像, 2018, 9(10): 721-724. CHEN Xuzhu, MA Jun. Status of radiomics in cerebral giomas[J]. Chinese Journal of Magnetic Resonance Imaging, 2018, 9(10): 721-724.
[13] Sun MZ, Oh T, Ivan ME, et al. Survival impact of time to initiation of chemoradiotherapy after resection of newly diagnosed glioblastoma[J]. Journal of neurosurgery, 2015, 122: 1144-1150. doi:10.3171/2014.9.JNS14193.
[14] 国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018年版)[J]. 中华神经外科杂志, 2019, 35(3): 217-239.
[15] 王强, 王荣福. PET/CT多模态显像技术特点及临床应用进展[J]. 中国医学装备, 2013, 10(1): 60-62. WANG Qiang, WANG Rongfu. Technical features and clinical application of PET/CT multi-mode imaging[J]. China Medical Equipment, 2013, 10(1): 60-62.
[16] Lin Y, Li J, Zhang Z, et al. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging and arterial spin labeling MR imaging in gliomas[J]. Biomed Res Int, 2015, 2015: 234-245. doi:10.1155/2015/234245.
[17] Cho H, Park H. Classification of low-grade and high-grade glioma using multi-modal image radiomics features[J]. Annu Int Conf IEEE Eng Med Biol Soc,2017,2017: 3081-3084. doi:10.1109/EMBC.2017.8037508.
[18] Yu JH, Shi ZF, Lian YX, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade Ⅱ glioma[J]. Eur Radiol, 2017, 27(8): 3509-3522.
[19] Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models[J]. Radiology, 2016, 280(3): 880-889.
[20] Qian Z, Li Y, Sun Z, et al. Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction[J]. Aging, 2018, 10(10): 2884-2899. doi:10.18632/aging.101594.
[21] Choi YS, Ahn SS, Chang JH, et al. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction[J]. Eur Radiol, 2020, 30(7): 3834-3842.
[22] Lemee JM, Clavreul A, Menei P. Intratumoral heterogeneity in glioblastoma: dont forget the peritumoral brain zone[J]. Neuro Oncol, 2015, 17(10): 1322-1332.
[23] Wang XF, Liu XY, Chen YP, et al. Histopathological findings in the peritumoral edema area of human glioma[J]. Histol Histopathol, 2015, 30(9): 1101-1109.
[24] Wang Q, Zhang J, Xu X, et al. Diagnostic performance of apparent diffusion coefficient parameters for glioma grading[J]. J Neurooncol, 2018, 139(1): 61-68.
[25] De Vleeschouwer S, Ardon H, Van Calenbergh F, et al. Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination[J]. Cancer Immunol Immunother, 2012, 61(11): 2105-2112.
[26] 杜谋选, 袁军. 影响人脑胶质瘤的预后因素[J]. 中华神经医学杂志, 2005, 4(2): 145-148. DU Mouxuan, YUAN Jun. Prognostic factors for patients with glioma[J]. Chinese Journal of Neuromedicine, 2005, 4(2): 145-148.
[1] 王琳琳 孙美丽 孙玉萍 张楠 刘传勇. 中心体α-微管蛋白、γ-微管蛋白在脑胶质瘤中的表达及其与Survivin表达的相关性研究[J]. 山东大学学报(医学版), 2209, 47(6): 103-.
[2] 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65.
[3] 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75.
[4] 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50.
[5] 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95.
[6] 孙庆杰,张怡莎,管尚慧,凤志慧. 丙戊酸对134例放疗神经胶质瘤患者预后生存和肿瘤复发的影响[J]. 山东大学学报 (医学版), 2021, 59(8): 80-85.
[7] 刘学业,李齐明,唐弘毅,徐秋平,陈文倩,郭泾. 年轻成人颞下颌关节髁突体积、表面积与关节盘矢向位置的关系[J]. 山东大学学报 (医学版), 2021, 59(6): 117-121.
[8] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[9] 顾金海,路宁,顾珈榕,文玉军,强媛媛,和祯泉,杨勇,王峰,孙涛,牛建国. 胶质瘤细胞与血管内皮细胞的信号Crosstalk对肿瘤细胞增殖和侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 1-6.
[10] 李文清,叶兰,姜玉华. CDK7抑制剂THZ1对人胶质瘤细胞U251放疗的增敏性[J]. 山东大学学报 (医学版), 2021, 59(1): 8-13.
[11] 陈晓丽,桂振朝,高杨,邢梦瑶,修建军. 13例涎腺导管癌的影像学表现分析[J]. 山东大学学报 (医学版), 2021, 59(1): 78-82.
[12] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87.
[13] 江涛. 类脑智能在脑科学的前沿应用[J]. 山东大学学报 (医学版), 2020, 1(8): 10-13.
[14] 陈安静,张训. 靶向小类泛素化修饰的胶质瘤治疗新策略[J]. 山东大学学报 (医学版), 2020, 1(8): 88-94.
[15] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[5] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[6] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[7] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[8] 马立新 李刚 苏雨行 张彩 张建. NKG2D在颅内肿瘤中的表达[J]. 山东大学学报(医学版), 2009, 47(5): 88 -91 .
[9] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[10] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .