山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 48-55.doi: 10.6040/j.issn.1671-7554.0.2020.1752
张高瑞1,张玉婷2,赵雨萱3,王方青3,于德新3
ZHANG Gaorui1, ZHANG Yuting2, ZHAO Yuxuan3, WANG Fangqing3, YU Dexin3
摘要: 目的 探讨诱导铁死亡及实时MR监控的MnFe2O4焦糖碳纳米探针(MnFe2O4@CNS)在胰腺癌诊疗一体化中的价值。 方法 制备MnFe2O4@CNS纳米探针,表征并测定弛豫率;CCK-8检测细胞毒性,测量芬顿(Fenton)反应催化能力并检测小鼠胰腺导管上皮肿瘤细胞(Panc02)摄取情况;评价纳米探针在Panc02细胞内MR成像能力;对细胞凋亡情况及活性氧(ROS)水平进行检测,透射电镜观察细胞形态学变化。 结果 MnFe2O4@CNS的平均粒径为183 nm,弛豫率为512.58 mmol/L·s-1。与50、100、200 mg/mL的纳米探针孵育后,Panc02与人胰腺导管上皮细胞(hTERT-HPNE)相比细胞活力具有统计学差异(P<0.05);MnFe2O4@CNS具有较高的Fenton反应催化能力,且能够被肿瘤细胞摄取;随着纳米探针浓度的提高,Panc02活性氧及细胞凋亡水平随之上升,线粒体形态显示出铁死亡的特征。细胞MR显示随着孵育时间的延长纳米探针T2成像效果逐渐增强,信号强度与对照组之间有统计学差异(P<0.05)。 结论 MnFe2O4@CNS生物相容性高,能够实现MR靶向成像并通过芬顿反应诱发细胞铁死亡,在胰腺癌诊疗一体化中具有重要的潜在价值。
中图分类号:
[1] Xu M, Jung X, Hines O J, et al. Obesity and pancreatic cancer: overview of epidemiology and potential prevention by weight loss [J]. Pancreas, 2018, 47(2): 158-162. [2] Gajiwala S, Torgeson A, Garrido-Laguna I, et al. Combination immunotherapy and radiation therapy strategies for pancreatic cancer-targeting multiple steps in the cancer immunity cycle [J]. J Gastrointest Oncol, 2018, 9(6): 1014-1026. [3] Saravanakumar K, Hu X, Ali D M, et al. Emerging strategies in stimuli-responsive nanocarriers as the drug delivery system for enhanced cancer therapy [J]. Curr Pharm Des, 2019, 25(24): 2609-2625. [4] Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy [J]. J Cell Mol Med, 2019, 23(8): 4900-4912. [5] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell, 2012, 149(5): 1060-1072. [6] Shen Z, Song J, Yung BC, et al. Emerging strategies of cancer therapy based on ferroptosis [J]. Adv Mater, 2018, 30(12): e1704007.doi:10.1002/adma.201704007 [7] Morris JT, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma [J]. Nat Rev Cancer, 2010, 10(10): 683-695. [8] Ansari D, Carvajo M, Bauden M, et al. Pancreatic cancer stroma: controversies and current insights [J]. Scand J Gastroenterol, 2017, 52(6-7): 641-646. [9] Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges [J]. Nat Rev Clin Oncol, 2010, 7(3): 163-172. [10] Arlt A, Muerkoster SS, Schafer H. Targeting apoptosis pathways in pancreatic cancer [J]. Cancer Lett, 2013, 332(2): 346-358. [11] Wolske KM, Ponnatapura J, Kolokythas O, et al. Chronic pancreatitis or pancreatic tumor? A problem-solving approach [J]. Radiographics, 2019, 39(7): 1965-1982. [12] Feng W, Han X, Wang R, et al. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows [J]. Adv Mater, 2019, 31(5): e1805919. doi:10.1002/adma.201805919 [13] Gao M, Yi J, Zhu J, et al. Role of Mitochondria in Ferroptosis [J]. Mol Cell, 2019, 73(2): 354-363. [14] Zheng DW, Lei Q, Zhu JY, et al. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy [J]. Nano Lett, 2017, 17(1): 284-291. [15] Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles heel? [J]. Nat Rev Cancer, 2014, 14(11): 709-721. [16] Baulies A, Montero J, Matias N, et al. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading [J]. Redox Biol, 2018, 14(1): 164-177. [17] Gong N, Ma X, Ye X, et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment [J]. Nat Nanotechnol, 2019, 14(4): 379-387. [18] Yang B, Liu Q, Yao X, et al. FePt@MnO-Based Nanotheranostic platform with acidity-triggered dual-Ions release for enhanced MR imaging-guided ferroptosis chemodynamic terapy [J]. ACS Appl Mater Interfaces, 2019, 11(42): 38395-38404. [19] Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of prthotopic brain tumors [J]. ACS Nano, 2018, 12(11): 11355-11365. [20] Bebber CM, Muller F, Prieto CL, et al. Ferroptosis in cancer cell biology [J]. Cancers(Basel), 2020, 12(1): 164. [21] Xiang Y, Li N, Guo L, et al. Biocompatible and pH-sensitive MnO-loaded carbonaceous nanospheres(MnO@CNSs): a theranostic agent for magnetic resonance imaging-guided photothermal therapy [J]. Carbon, 2018, 136(1): 113-124. [22] Qi Y, Li W, Fang J, et al. Application and mechanism of manganese-coated caramelization nanospheres for active targeting in hepatobiliary tumors [J]. Nanomedicine(Lond), 2019, 14(22): 2973-2985. [23] Silambarasu A, Manikandan A, Balakrishnan K, et al. Comparative Study of Structural, Morphological, Magneto-Optical and Photo-Catalytic Properties of Magnetically Reusable Spinel MnFe2O4 Nano-Catalysts[J]. J Nanosci Nanotechnol, 2018, 18(5): 3523-3531. [24] Huang G, Li H, Chen J, et al. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control [J]. Nanoscale, 2014, 6(17): 10404-10412. [25] 陶旭锋,Vay Liang W. Bill Go,肖桂山. 活性氧介导的肿瘤微环境在胰腺癌发生与发展中作用的研究进展[J]. 生理学报, 2021(11): 1-22. TAO Xufeng, Vay Liang W. Bill Go, XIAO Guishan. Rogress on the role of reactive oxygen species-mediated tumor microenvironment in pancreatic cancer [J]. Acta Physiologica Sinica, 2021(11): 1-22. [26] Bao W, Liu X, Lv Y, et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy [J]. ACS Nano, 2019, 13(1): 260-273. |
[1] | 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22. |
[2] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[3] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[4] | 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50. |
[5] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[6] | 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41. |
[7] | 刘学业,李齐明,唐弘毅,徐秋平,陈文倩,郭泾. 年轻成人颞下颌关节髁突体积、表面积与关节盘矢向位置的关系[J]. 山东大学学报 (医学版), 2021, 59(6): 117-121. |
[8] | 宋珍珍,孙小玲,李海鸥,王芳,张冉,于德新. 120例胶质瘤及瘤周水肿MRI影像组学在评估肿瘤复发中的价值[J]. 山东大学学报 (医学版), 2021, 59(11): 53-60. |
[9] | 陈晓丽,桂振朝,高杨,邢梦瑶,修建军. 13例涎腺导管癌的影像学表现分析[J]. 山东大学学报 (医学版), 2021, 59(1): 78-82. |
[10] | 孙珊珊,房雷,赵翠萍,钟庆,高翔,李玲. 伴可逆性后部脑病综合征MR表现的急性间歇性卟啉病1例报告并文献复习[J]. 山东大学学报 (医学版), 2020, 58(2): 118-121. |
[11] | 陆菁菁,夏宇. 子宫内膜异位症的影像学诊断[J]. 山东大学学报 (医学版), 2019, 57(6): 40-45. |
[12] | 张晓倩,孟祥水,任庆国,南晓敏,安盼盼,帅欣艳,夏晓娜,王璇. 磁共振波谱成像对检测非痴呆型血管性认知障碍的探讨[J]. 山东大学学报 (医学版), 2019, 57(4): 42-46. |
[13] | 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75. |
[14] | 张丽红,李娴,王林省,李宏磊,李磊. 含脂肪节细胞神经瘤的影像学表现与病理对照[J]. 山东大学学报 (医学版), 2018, 56(12): 73-78. |
[15] | 王玉红,张丽红,王林省,陈月芹,王彦辉,王皆欢,李传福. 消化道颗粒细胞瘤的影像学表现[J]. 山东大学学报(医学版), 2017, 55(8): 66-70. |
|