山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 56-62.doi: 10.6040/j.issn.1671-7554.0.2020.1475
南莉1,杨凯转2,张一帆1
NAN Li1, YANG Kaizhuan2, ZHANG Yifan1
摘要: 目的 比较不同照度白色LED光源对SD大鼠视网膜结构及功能的影响,以期获得较为安全的照度阈值。 方法 选取健康8~10周龄SD大鼠40只,随机分为正常对照组(8只)和实验组(4组,每组8只)。选取白色LED光源,以200、300、500、1 000 lux分别间歇性照射实验组动物,光照12 h,暗适应12 h,反复7次建立间歇性光损伤模型。造模后暗适应24 h,通过闪光视网膜电图(F-ERG)评估视网膜功能;苏木精-伊红(HE)染色和透射电子显微镜观察SD大鼠视网膜形态学改变;逆转录聚合酶链反应(RT-PCR)检测大鼠视网膜中Bax、Bcl-2及Caspese-3 mRNA的相对表达量。 结果 500、1 000 lux暗适应Rod-Rb、Max-Ra、Max-R、Ops波潜伏期及波幅下降。HE染色组织切片检查1 000 lux组视网膜损伤最严重;透射电子显微镜示500、1 000 lux细胞膜结构受损。实时荧光定量PCR显示500、1 000 lux照射后Bax和Caspase-3 mRNA相对表达量增加,Bcl-2 mRNA相对表达量减少。 结论 日常室内照明强度下,白色LED 7 d循环照射对SD大鼠视网膜结构和功能无显著影响,光源达到及超过500 lux时,可以引起SD大鼠视网膜光损伤,其损伤程度与照度有关。凋亡相关基因Bax、Caspase-3促进视网膜光损伤的发生与进展。
中图分类号:
[1] Bielmeier CB, Schmitt SI, Braunger BM. Light intensity-dependent dysregulation of retinal reference genes [J]. Adv Exp Med Biol, 2019, 1185: 295-299. doi: 10.1007/978-3-030-27378-1_48. [2] He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial [J]. Jama, 2015, 314(11): 1142-1148. [3] Jin JX, Hua WJ, Jiang X, et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun eye care study [J]. BMC Ophthalmol, 2015, 15: 73. doi:10.1186/512886-015-0052-9. [4] Landis EG, Yang V, Brown DM, et al. Dim light exposure and myopia in children [J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4804-4811. [5] Krigel A, Berdugo M, Picard E, et al. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity [J]. Neuroscience, 2016, 339: 296-307. doi: 10.1016/j.neuroscience.2016.10.015. [6] Knels L, Valtink M, Roehlecke C, et al. Blue light stress in retinal neuronal(R28)cells is dependent on wavelength range and irradiance [J]. Eur J Neurosci, 2011, 34(4): 548-558. [7] Nakamura M, Yako T, Kuse Y, et al. Exposure to excessive blue LED light damages retinal pigment epithelium and photoreceptors of pigmented mice [J]. Exp Eye Res, 2018, 177: 1-11. doi: 10.1016/j.exer.2018.07.022. [8] Sudharsan R, Simone KM, Anderson NP, et al. Acute and protracted cell death in light-induced retinal degeneration in the canine model of rhodopsin autosomal dominant retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 270-281. [9] Schäfer N, Grosche A, Schmitt SI, et al. Complement components showed a time-dependent local expression pattern in constant and acute white light-induced photoreceptor damage [J]. Front Mol Neurosci, 2017, 10: 197. doi: 10.3389/fnmol.2017.00197. [10] Uchida Y, Morimoto Y, Uchiike T, et al. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model [J]. Early Hum Dev, 2015, 91(7): 381-385. [11] Ide T, Toda I, Miki E, et al. Effect of blue lght-reducing eye glasses on critical flicker frequency[J]. Asia-Pacific journal of ophthalmology(Philadelphia, Pa.), 2015, 4(2): 80-85. [12] Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology [J]. Mol Vis, 2016, 22: 61-72. [13] Xie C, Li X, Tong J, et al. Effects of white light-emitting diode(LED)light exposure with different correlated color temperatures(CCTs)on human lens epithelial cells in culture [J]. Photochem Photobiol, 2014, 90(4): 853-859. [14] Jaadane I, Boulenguez P, Chahory S, et al. Retinal damage induced by commercial light emitting diodes(LEDs)[J]. Free Radic Biol Med, 2015, 84: 373-384. doi: 10.1016/j.freeradbiomed.2015.03.034. [15] 俞永珍, 徐哲, 邹秀兰, 等. 蓝光诱导氧化应激反应参与视网膜色素上皮细胞凋亡机制研究[J]. 眼科新进展, 2015, 35(6): 520-524. YU Yongzhen, XU Zhe, ZOU Xiulan, et al. Role of oxidative stress induced by blue light in human retinal pigment epithelium cells apoptosis [J]. Recent Advances in Ophthalmology, 2015, 35(6): 520-524. [16] 彭素芬, 韩泉洪, 李丽华, 等. LED光源对人视网膜色素上皮细胞分泌单核细胞趋化因子-1和白细胞介素-8的影响[J]. 眼科新进展, 2016, 36(3): 201-205. PENG Sufen, HAN Quanhong, LI Lihua, et al. Effects of light emitting diode on expression of MCP-1 and IL-8 in cultured human retinal pigment epithelial cells [J]. Recent Advances in Ophthalmology, 2016, 36(3):201-205. [17] Jaadane I, Villalpando Rodriguez G, Boulenguez P, et al. Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology [J]. Sci Rep, 2020, 10(1): 6733. [18] Benedetto MM, Contin MA. Oxidative stress in retinal degeneration promoted by constant LED light [J]. Front Cell Neurosci, 2019, 13: 139. doi: 10.3389/fncel.2019.00139. [19] Kim GH, Kim HI, Paik SS, et al. Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice [J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(4): 705-716. [20] 蔡建奇, 王媛媛, 杜鹏, 等. 基于视觉生理指标的发光二极管光健康影响[J]. 中华眼视光与视觉科学杂志, 2016, 18(9): 513-516. CAI Jianqi, WANG Yuanyuan, DU Peng, et al. An introduction to research on the impact of light-emitting diode lighting on health, based on the visual physiological index [J]. Chinese Journal of Optometry Ophthalmology and Visual science, 2016, 18(9): 513-516. [21] Grimm C, Remé CE. Light damage models of retinal degeneration [J]. Methods Mol Biol, 2019, 1834: 167-178. doi: 10.1007/978-1-4939-8669-9_12. [22] Albarracin R, Eells J, Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration [J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3582-3592. [23] Tian L, Zhang L, Xia F, et al. Hydrogen-rich saline ameliorates the retina against light-induced damage in rats [J]. Med Gas Res, 2013, 3(1): 19. [24] Organisciak DT, Darrow RM, Barsalou L, et al. Susceptibility to retinal light damage in transgenic rats with rhodopsin mutations [J]. Invest Ophthalmol Vis Sci, 2003, 44(2): 486-492. [25] Jaadane I, Boulenguez P, Chahory S, et al. Retinal damage induced by commercial light emitting diodes(LEDs)[J]. Free Radic Biol Med, 2015, 84: 373-384. doi: 10.1016/j.freeradbiomed.2015.03.034. [26] Checker R, Pal D, Patwardhan RS, et al. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection [J]. Free Radic Biol Med, 2019, 143: 560-572. doi:10.1016/j.freeradbiomed.2019.09.001. [27] Ogawa K, Kuse Y, Tsuruma K, et al. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro [J]. BMC Complement Altern Med, 2014, 14: 120. doi: 10.1186/1472-6882-14-120. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[3] | 孙涛 张道来 谢珊珊 王玉卓 冯玉新 辛华. 酒精对原代培养的神经前体细胞间隙连接蛋白43表达的影响[J]. 山东大学学报(医学版), 2209, 47(6): 20-. |
[4] | 张道来 孙涛 谢珊珊 王玉卓 赵玲 冯玉新 辛华. 体外原代培养胎鼠大脑皮层神经元NMDAR1亚基表达的发育性变化[J]. 山东大学学报(医学版), 2209, 47(6): 28-32. |
[5] | 祝林 胡三元 张光永 丁祥就. 前列腺素E2对阻塞性黄疸大鼠小肠粘膜形态的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 12-. |
[6] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[7] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[8] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[9] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[10] | 张正铎,吴虹,祁少俊,唐延金,高希宝. 口服5-甲基四氢叶酸对大鼠阿尔茨海默病的预防作用[J]. 山东大学学报 (医学版), 2022, 60(3): 13-23. |
[11] | 赵慧文,许琳,单姗,赵秀兰. 牛磺酸对1-溴丙烷致大鼠认知功能障碍的保护作用[J]. 山东大学学报 (医学版), 2022, 60(2): 14-21. |
[12] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
[13] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[14] | 郭曼,刘鹏,龙麟. 防纤汤对放射性肺炎大鼠的影响及作用机制[J]. 山东大学学报 (医学版), 2021, 59(8): 53-60. |
[15] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
|