您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (9): 69-72.doi: 10.6040/j.issn.1671-7554.0.2016.074

• • 上一篇    下一篇

基于体检队列的2型糖尿病风险预测模型

杨洋1,张光2,张成琪2,宋心红3,薛付忠1,王萍4,王丽5,刘言训1   

  1. 1. 山东大学公共卫生学院生物统计系, 山东 济南 250012;2.山东大学附属千佛山医院健康管理中心, 山东 济南 250014;3.山东大学附属省立医院健康查体中心, 山东 济南 250021;4.山东大学齐鲁医院门诊手术室, 山东 济南 250012;5.山东电力中心医院心内科, 山东 济南 250001
  • 收稿日期:2016-01-21 出版日期:2016-09-10 发布日期:2016-09-10
  • 通讯作者: 刘言训. Email: liu-yx@sdu.edu.cn E-mail:mail: liu-yx@sdu.edu.cn
  • 基金资助:
    国家国际科技合作专项(2014GFA32830-A02)

A prediction model for type 2 diabetes risks: a cohort study based on health examination

YANG Yang1, ZHANG Guang2, ZHANG Chengqi2, SONG Xinhong3, XUE Fuzhong1, WANG Ping4, WANG Li5, LIU Yanxun1   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Health Examiwation Center, Qianfoshan Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China;
    3. Health Examination Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China;
    4. Outpatient Operating Room, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    5. Department of Cardiology, Shandong Electric Power Central Hospital, Jinan 250001, Shandong, China
  • Received:2016-01-21 Online:2016-09-10 Published:2016-09-10

摘要: 目的 构建体检者2型糖尿病发病风险预测模型。 方法 选择2005年1月至2010年12月在山东大学附属省立医院、山东大学附属千佛山医院体检中心体检的非糖尿病者16 715人,随机选取70%体检者为训练组,用于建立Cox预测模型,逐步选择法进行变量选择,使用十折交叉验证法检验模型的稳定性,根据预后指数制定风险分级;剩余30%的体检者为校验组,对模型进行组外验证,再次评价模型效果。 结果 观察期间共新发生2型糖尿病858例,发病密度为15.14‰。最终纳入模型的变量包括年龄、体质量指数、空腹血糖、甘油三酯、是否患高血压以及白细胞自然对数;训练组ROC曲线下面积为0.742(95%CI: 0.732~0.752),校验组ROC曲线下面积为0.760(95%CI: 0.748~0.772)。 结论 建立的2型糖尿病风险预测模型在体检者中有较好的预测能力。

关键词: 体检, 队列, 2型糖尿病, 风险预测模型

Abstract: Objective To establish a model to evaluate the risks of type 2 diabetes among Han population in mainland China. Methods A total of 16,715 non-diabetic people who underwent routine health check-up at the Center for Health Management of Qianfoshan Hospital Affiliated to Shandong University and Shandong Provincial Hospital Affiliated to Shandong University during Jan. 2005 and Dec. 2010 were enrolled in the study. These people were randomly divided into the training group (n=11 700, 70%)and testing group(n=5 015, 30%). Cox regression was used to construct a simple risk model among the training group by stepwise selection method, and risk classification was drawn up according to the prognostic index. Ten-fold cross validation was used to test the stability of the model in the testing group. Discriminatory ability was determined by the area under the ROC curve. Results Altogether 858 new diabetic cases were observed over the five-year follow-up, resulting in a cumulative incidence of 15.14/1000 person years. The risk factors included age, body mass index, fasting blood-glucose, triglyceride, hypertension status and leukocyte logarithm. The estimated AUC for the model was 0.742(95%CI: 0.732-0.752)in the training group and 0.760(95%CI: 山 东 大 学 学 报 (医 学 版)54卷9期 -杨洋,等.基于体检队列的2型糖尿病风险预测模型 \=-0.748-0.772)in the testing group. Conclusion We have constructed a risk model that could be useful for identifying individuals at high risk of diabetes in health examination population.

Key words: Type 2 diabetes, Cohort study, Predictive model, Health check-up

中图分类号: 

  • R587.1
[1] Yang W, Lu J. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 12(362):1090-1101.
[2] Dong JJ, Lou NJ, Zhao JJ, et al. Evaluation of a risk factor scoring model in screening for undiagnosed diabetes in China population[J]. J Zhejiang Univ Sci B, 2011, 12(10):846-852.
[3] Phillips CM, Kearney PM, Mccarthy VJ, et al. Comparison of diabetes risk score estimates and cardiometabolic risk profiles in a middle-aged Irish population[J]. PLoS One, 2013, 8(11): e78950. doi: 10.1371/journal.pone.0078950.
[4] Lu C, Sun W. Prevalence of diabetes in Chinese adults[J]. JAMA, 2014, 311(2):199-200.
[5] Sun K, Li F, Qi Y, et al. Sex difference in the association between habitual daytime napping and prevalence of diabetes: a population-based study[J]. Endocrine, 2016, 52(2):263-270.
[6] 中国2型糖尿病防治指南(2010年版)[J]. 中国糖尿病杂志, 2012(1):81-117.
[7] 中国高血压防治指南(2010年版)[J]. 中华高血压杂志,2011(8):701-743.
[8] Barber SL, Yao L. Health insurance systems in China: A briefing note: The path to universal coverage [Z]. World Health Organization, 2010.
[9] Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk[J]. Diabetes Care, 2003, 3(26):725-731.
[10] Aekplakorn W, Bunnag P, Woodward M, et al. A risk score for predicting incident diabetes in the Thai population[J]. Diabetes Care, 2006, 29(8):1872-1877.
[11] Balkau B, Lange C, Fezeu L, et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the epidemiological study on the insulin resistance syndrome(DESIR)[J]. Diabetes Care, 2008, 31(10):2056-2061.
[12] Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk[J]. Diabetes Care, 2003, 26(3):725-731.
[13] Vassy JL, Hivert MF, Porneala B, et al. Polygenic type 2 diabetes prediction at the limit of common variant detection[J]. Diabetes, 2014, 63(6):2172-2182.
[14] Noto D, Cefalù AB, Barbagallo CM, et al. Prediction of incident type 2 diabetes mellitus based on a twenty-year follow-up of the Ventimiglia heart study[J]. Acta Diabetol, 2012, 49(2):145-151.
[15] Lim N, Park S, Choi S, et al. A risk score for predicting the incidence of type 2 diabetes in a middle-aged Korean cohort[J]. Circ J, 2012, 76(8):1904-1910.
[16] Demmer RT, Jacobs DR, Desvarieux M. Periodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study[J]. Diabetes Care, 2008, 31(7):1373-1379.
[17] Heianza Y, Arase Y, Saito K, et al. Development of a screening score for undiagnosed diabetes and its application in estimating absolute risk of future type 2 diabetes in Japan: Toranomon Hospital Health Management Center Study 10(TOPICS 10)[J]. J Clin Endocrinol Metab, 2013, 98(3):1051-1060.
[18] Xu L, Jiang CQ, Schooling CM, et al. Prediction of 4-year incident diabetes in older Chinese: recalibration of the Framingham diabetes score on Guangzhou Biobank Cohort Study[J]. Prev Med, 2014, 69:63-68. doi:10.1016/j.ypmed.2014.09.004. Epub 2014 Sep 17.
[19] Gupta AK, Dahlof B, Dobson J, et al. Determinants of new-onset diabetes among 19,257 hypertensive patients randomized in the Anglo-Scandinavian cardiac outcomes trial-blood pressure lowering arm and the relative influence of antihypertensive medication[J]. Diabetes Care, 2008, 31(5):982-988.
[20] 王孝勇. 无症状2型糖尿病及糖尿病前期人群社区筛查策略研究[D]. 山东大学, 2011.
[21] 师正坤, 郭佳, Monica Parry, 等. 中国糖尿病风险评估工具的研究现状与进展[J]. 中国全科医学, 2015(20):2368-2372. SHI Zhengkun, GUO Jia, Monica Parry, et al. Research status and progress of Chinese risk assessment tools for diabetes mellitus[J]. Chinese General Practice, 2015, 18(20):2368-2372.
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[2] 曹瑾,季晓康,孙秀彬,蒋正,薛付忠. γ-谷氨酰转肽酶与高尿酸血症关系的队列分析[J]. 山东大学学报(医学版), 2017, 55(6): 124-128.
[3] 刘娅飞,邢娉,徐秀琴,杨淑芳,刘言训,袁中尚,薛付忠. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017, 55(6): 30-36.
[4] 李吉庆,赵焕宗,宋炳红,张理纯,李向一,陈亚飞,王萍,薛付忠. 基于健康管理队列的心血管事件风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 56-60.
[5] 于涛,刘焕乐,冯新,徐付印,陈亚飞,薛付忠,张成琪. 基于健康管理队列的高血压风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 61-65.
[6] 王春霞,许艺博,杨宁,夏冰,王萍,薛付忠. 基于健康管理队列的冠心病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 66-71.
[7] 张光,王广银,吴红彦, 张红玉,王停停,李吉庆,李敏,康凤玲,刘言训,薛付忠. 健康管理人群高脂血症风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 72-76.
[8] 李江冰,宋心红,林海燕,张冬芝,李向一,许艺博,王丽,薛付忠. 健康管理人群缺血性异常心电图的影响因素[J]. 山东大学学报(医学版), 2017, 55(6): 77-81.
[9] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[10] 孙苑潆,杨亚超,曲明苓,陈雁敏,李敏,王淑康,薛付忠,刘云霞. 健康管理人群代谢综合征发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 87-92.
[11] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[12] 李敏,王春霞,夏冰,朱茜,孙苑潆,王淑康,薛付忠,贾红英. 健康管理人群脑卒中风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 93-97.
[13] 蒋正,申振伟,张光,李润滋,曹瑾,王丽,薛付忠,刘言训. 基于体检人群的非酒精性脂肪肝筛查工具的建立[J]. 山东大学学报(医学版), 2017, 55(6): 114-118.
[14] 于媛媛,王春霞,苏萍,孙苑潆,薛付忠,刘言训. 健康管理队列白内障发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 104-107.
[15] 柳晓涓,蒋正,康凤玲,周苗,林伟强,薛付忠. 中性粒细胞计数与非酒精性脂肪肝关联性的前瞻性队列研究[J]. 山东大学学报(医学版), 2017, 55(6): 119-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!