山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 50-60.doi: 10.6040/j.issn.1671-7554.0.2020.0602
Di ZHANG1,2,*(),Meng YU1,2,Xia LIU1,2
摘要:
神经调控是利用侵入性或非侵入性技术、采用物理性(光、磁、电、超声)或化学性手段改变神经系统功能的生物医学工程技术。过去的30年里,随着人们对脑功能调控机制的深入研究以及现代科学技术的发展,神经调控已经从基本概念转化为临床应用,从单纯技术发展成百亿产业。同时,新兴的神经调控技术也不断涌现。神经调控技术的发展不但为神经科学基础研究提供了全新的研究工具,也为神经系统疾病临床治疗提供了崭新的干预手段。将简述神经调控技术的发展现状和应用领域,阐明不同神经调控技术的作用原理和优劣势,以及展望神经调控技术的发展前景。
中图分类号:
1 |
Boyden ES , Zhang F , Bamberg E , et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8 (9): 1263- 1268.
doi: 10.1038/nn1525 |
2 |
Nagel G , Szellas T , Huhn W , et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci U S A, 2003, 100 (24): 13940- 13945.
doi: 10.1073/pnas.1936192100 |
3 | Váró G , Brown LS , Lakatos M , et al. Characterization of the photochemical reaction cycle of proteorhodopsin[J]. Biophys J, 2003, 84 (2 Pt 1): 1202- 1207. |
4 |
Zhang F , Prigge M , Beyrière F , et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri[J]. Nat Neurosci, 2008, 11 (6): 631- 633.
doi: 10.1038/nn.2120 |
5 |
Berl T . Treating hyponatremia: damned if we do and damned if we don't[J]. Kidney Int, 1990, 37 (3): 1006- 1018.
doi: 10.1038/ki.1990.78 |
6 | Gunaydin LA , Yizhar O , Berndt A , et al. Ultrafast optogenetic control[J]. Nat Neurosci, 2010, 13 (3): 387- 392. |
7 |
Yizhar O , Fenno LE , Prigge M , et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477 (7363): 171- 178.
doi: 10.1038/nature10360 |
8 | Muir J, Bagot RC. Optogenetics: illuminating the neural circuits of depression[M]// Wquevedo J, Carvalho AF, Zarate CA. Neurobiology of depression. Amsterdam: Elsevier, 2019: 147-157. |
9 |
Chaudhury D , Liu H , Han MH . Neuronal correlates of depression[J]. Cell Mol Life Sci, 2015, 72 (24): 4825- 4848.
doi: 10.1007/s00018-015-2044-6 |
10 |
Chen P , Hong W . Neural Circuit Mechanisms of Social Behavior[J]. Neuron, 2018, 98 (1): 16- 30.
doi: 10.1016/j.neuron.2018.02.026 |
11 |
Ramirez S , Tonegawa S , Liu X . Identification and optogenetic manipulation of memory engrams in the hippocampus[J]. Front Behav Neurosci, 2014, 7: 226.
doi: 10.3389/fnbeh.2013.00226 |
12 |
Josselyn SA , Tonegawa S . Memory engrams: recalling the past and imagining the future[J]. Science, 2020, 367 (6473): eaaw4325.
doi: 10.1126/science.aaw4325 |
13 |
Denny CA , Lebois E , Ramirez S . From engrams to pathologies of the brain[J]. Front Neural Circuits, 2017, 11: 23.
doi: 10.3389/fncir.2017.00023 |
14 |
Stamatakis AM , Stuber GD . Optogenetic strategies to dissect the neural circuits that underlie reward and addiction[J]. Cold Spring Harb Perspect Med, 2012, 2 (11): a011924.
doi: 10.1101/cshperspect.a011924 |
15 |
Montgomery KL , Yeh AJ , Ho JS , et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nat Methods, 2015, 12 (10): 969- 974.
doi: 10.1038/nmeth.3536 |
16 |
Chen S , Weitemier AZ , Zeng X , et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 2018, 359 (6376): 679- 684.
doi: 10.1126/science.aaq1144 |
17 |
Zhou XX , Chung HK , Lam AJ , et al. Optical control of protein activity by fluorescent protein domains[J]. Science, 2012, 338 (6108): 810- 814.
doi: 10.1126/science.1226854 |
18 |
Idevall-Hagren O , Dickson EJ , Hille B , et al. Optogenetic control of phosphoinositide metabolism[J]. Proc Natl Acad Sci U S A, 2012, 109 (35): E2316- E2323.
doi: 10.1073/pnas.1211305109 |
19 |
Strickland D , Lin Y , Wagner E , et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology[J]. Nat Methods, 2012, 9 (4): 379- 384.
doi: 10.1038/nmeth.1904 |
20 |
Grusch M , Schelch K , Riedler R , et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light[J]. EMBO J, 2014, 33 (15): 1713- 1726.
doi: 10.15252/embj.201387695 |
21 | Nagaraj S , Mills E , Wong SSC , et al. Programming membrane fusion and subsequent apoptosis into mammalian cells[J]. ACS Synth Biol, 2013, 2 (4): 173- 179. |
22 |
Taslimi A , Vrana JD , Chen D , et al. An optimized optogenetic clustering tool for probing protein interaction and function[J]. Nat Commun, 2014, 5: 4925.
doi: 10.1038/ncomms5925 |
23 |
Bonger KM , Rakhit R , Payumo AY , et al. General method for regulating protein stability with light[J]. ACS Chem Biol, 2014, 9 (1): 111- 115.
doi: 10.1021/cb400755b |
24 |
Chen D , Gibson ES , Kennedy MJ . A light-triggered protein secretion system[J]. J Cell Biol, 2013, 201 (4): 631- 640.
doi: 10.1083/jcb.201210119 |
25 |
Motta-Mena LB , Reade A , Mallory MJ , et al. An optogenetic gene expression system with rapid activation and deactivation kinetics[J]. Nat Chem Biol, 2014, 10 (3): 196- 202.
doi: 10.1038/nchembio.1430 |
26 |
Bishop AC , Ubersax JA , Petsch DT , et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase[J]. Nature, 2000, 407 (6802): 395- 401.
doi: 10.1038/35030148 |
27 |
Cohen MS , Zhang C , Shokat KM , et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors[J]. Science, 2005, 308 (5726): 1318- 1321.
doi: 10.1126/science1108367 |
28 |
Dar AC , Das TK , Shokat KM , et al. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology[J]. Nature, 2012, 486 (7401): 80- 84.
doi: 10.1038/nature11127 |
29 |
Alexander GM , Rogan SC , Abbas AI , et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors[J]. Neuron, 2009, 63 (1): 27- 39.
doi: 10.1016/j.neuron.2009.06.014 |
30 |
Vardy E , Robinson JE , Li C , et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior[J]. Neuron, 2015, 86 (4): 936- 946.
doi: 10.1016/j.neuron.2015.03.065 |
31 |
Lerchner W , Xiao C , Nashmi R , et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel[J]. Neuron, 2007, 54 (1): 35- 49.
doi: 10.1016/j.neuron.2007.02.030 |
32 |
Magnus CJ , Lee PH , Atasoy D , et al. Chemical and genetic engineering of selective ion channel-ligand interactions[J]. Science, 2011, 333 (6047): 1292- 1296.
doi: 10.1126/science.1206606 |
33 |
Roth BL . DREADDs for neuroscientists[J]. Neuron, 2016, 89 (4): 683- 694.
doi: 10.1016/j.neuron.2016.01.040 |
34 |
Gomez JL , Bonaventura J , Lesniak W , et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine[J]. Science, 2017, 357 (6350): 503- 507.
doi: 10.1126/science.aan2475 |
35 |
Christine CW , Bankiewicz KS , Wan Laar AS , et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for parkinson's disease[J]. Ann Neurol, 2019, 85 (5): 704- 714.
doi: 10.1002/ana.25450 |
36 |
Drew L . Gene therapy targets epilepsy[J]. Nature, 2018, 564 (7735): S10- S11.
doi: 10.1038/d41586-018-07644-y |
37 |
Sehara Y , Fujimoto KI , Ikeguchi K , et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of parkinson's disease[J]. Hum Gene Ther Clin Dev, 2017, 28 (2): 74- 79.
doi: 10.1089/humc.2017.010 |
38 |
Chan KY , Jang MJ , Yoo BB , et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems[J]. Nat Neurosci, 2017, 20 (8): 1172- 1179.
doi: 10.1038/nn.4593 |
39 |
Lipsman N , Meng Y , Bethune AJ , et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nat Commun, 2018, 9 (1): 2336.
doi: 10.1038/s41467-018-04529-6 |
40 |
Szablowski JO , Lee-Gosselin A , Lue B , et al. Acoustically targeted chemogenetics for the non-invasive control of neural circuits[J]. Nat Biomed Eng, 2018, 2 (7): 475- 484.
doi: 10.1038/s41551-018-0258-2 |
41 |
Magnus CJ , Lee PH , Bonaventura J , et al. Ultrapotent chemogenetics for research and potential clinical applications[J]. Science, 2019, 364 (6436): eaav5282.
doi: 10.1126/science.aav5282 |
42 |
Weir GA , Middleton SJ , Clark AJ , et al. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source[J]. Brain, 2017, 140 (10): 2570- 2585.
doi: 10.1093/brain/awx201 |
43 | Barker AT , Jalinous R , Freeston IL . Non-invasive magnetic stimulation of human motor cortex[J]. Lancet, 1985, 1 (8437): 1106- 1107. |
44 |
Kujirai T , Caramia MD , Rothwell JC , et al. Corticocortical inhibition in human motor cortex[J]. J Physiol, 1993, 471: 501- 519.
doi: 10.1113/jphysiol.1993.sp019912 |
45 | Pascual-Leone A , Valls-Solé J , Wassermann EM , et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex[J]. Brain, 1994, 117 (Pt 4): 847- 858. |
46 |
Ge R , Downar J , Blumberger D , et al. Long-term effects of rTMS on the functional brain networks in treatment-resistant depression[J]. Brain Stimulation, 2019, 12 (2): 470.
doi: 10.1016/j.brs.2018.12.531 |
47 | Peng Z , Zhou C , Xue S , et al. Mechanism of repetitive transcranial magnetic stimulation for depression[J]. Shanghai Arch Psychiatry, 2018, 30 (2): 84- 92. |
48 |
Chervyakov AV , Chernyavsky AY , Sinitsyn DO , et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation[J]. Front Hum Neurosci, 2015, 9: 303.
doi: 10.3389/fnhum.2015.00303 |
49 |
George MS , Wassermann EM , Kimbrell TA , et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial[J]. Am J Psychiatry, 1997, 154 (12): 1752- 1756.
doi: 10.1176/ajp.154.12.1752 |
50 |
Klein E , Kreinin I , Chistyakov A , et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study[J]. Arch Gen Psychiatry, 1999, 56 (4): 315- 320.
doi: 10.1001/archpsyc.56.4.315 |
51 |
Rush AJ , Trivedi MH , Wisniewski SR , et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163 (11): 1905- 1917.
doi: 10.1176/ajp.2006.163.11.1905 |
52 |
Hunter AM , Minzenberg MJ , Cook IA , et al. Concomitant medication use and clinical outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder[J]. Brain Behav, 2019, 9 (5): e01275.
doi: 10.1002/brb3.1275 |
53 |
Fitzgerald PB , Hoy KE , Elliot D , et al. Exploring alternative rTMS strategies in non-responders to standard high frequency left-sided treatment: a switching study[J]. J Affect Disord, 2018, 232: 79- 82.
doi: 10.1016/j.jad.2018.02.016 |
54 |
Fadini T , Matthäus L , Rothkegel H , et al. H-coil: induced electric field properties and input/output curves on healthy volunteers, comparison with a standard figure-of-eight coil[J]. Clin Neurophysiol, 2009, 120 (6): 1174- 1182.
doi: 10.1016/j.clinph.2009.02.176 |
55 |
Kaster TS , Daskalakis ZJ , Noda Y , et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial[J]. Neuropsychopharmacology, 2018, 43 (11): 2231- 2238.
doi: 10.1038/s41386-018-0121-x |
56 |
Tavares DF , Myczkowski ML , Alberto RL , et al. Treatment of bipolar depression with deep TMS: results from a double-blind, randomized, parallel group, sham-controlled clinical trial[J]. Neuropsychopharmacology, 2017, 42 (13): 2593- 2601.
doi: 10.1038/npp.2017.26 |
57 |
Keller MB , McCullough JP , Klein DN , et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression[J]. N Engl J Med, 2000, 342 (20): 1462- 1470.
doi: 10.1056/NEJM200005183422001 |
58 |
Carpenter LL , Janicak PG , Aaronson ST , et al. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice[J]. Depress Anxiety, 2012, 29 (7): 587- 596.
doi: 10.1002/da.21969 |
59 | Cooper YA , Pianka ST , Alotaibi NM , et al. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: a systematic review and individual participant data meta-analysis of real-world evidence[J]. Epilepsia Open, 2018, 3 (1): 55- 65. |
60 |
Dionisio A , Duarte IC , Patrício M , et al. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review[J]. J Stroke Cerebrovasc Dis, 2018, 27 (1): 1- 31.
doi: 10.1016/j.jstrokecerebrovasdis.2017.09.008 |
61 | Bates KA , Rodger J . Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope?[J]. Restor Neurol Neurosci, 2015, 33 (4): 557- 569. |
62 |
Nardone R , Sebastianelli L , Versace V , et al. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders[J]. Sleep Med, 2020, 71: 113- 121.
doi: 10.1016/j.sleep.2020.01.028 |
63 |
Enticott PG , Fitzgibbon BM , Kennedy HA , et al. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder[J]. Brain Stimul, 2014, 7 (2): 206- 211.
doi: 10.1016/j.brs.2013.10.004 |
64 |
Stanley SA , Gagner JE , Damanpour S , et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice[J]. Science, 2012, 336 (6081): 604- 608.
doi: 10.1126/science.1216753 |
65 |
Stanley SA , Kelly L , Latcha KN , et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism[J]. Nature, 2016, 531 (7596): 647- 650.
doi: 10.1038/nature17183 |
66 |
Wheele MA , Smith CJ , Ottolini M , et al. Genetically targeted magnetic control of the nervous system[J]. Nat Neurosci, 2016, 19 (5): 756- 761.
doi: 10.1038/nn.4265 |
67 |
Chen R , Romero G , Christiansen MG , et al. Wireless magnetothermal deep brain stimulation[J]. Science, 2015, 347 (6229): 1477- 1480.
doi: 10.1126/science.1261821 |
68 |
Rao S , Chen R , LaRocca AA , et al. Remotely controlled chemomagnetic modulation of targeted neural circuits[J]. Nat Nanotechnol, 2019, 14 (10): 967- 973.
doi: 10.1038/s41565-019-0521-z |
69 | Mazars G , Merienne L , Cioloca C . Treatment of certain types of pain with implantable thalamic stimulators[J]. Neurochirurgie, 1974, 20 (2): 117- 24. |
70 |
Lozano AM , Eltahawy H . How does DBS work?[J]. Suppl Clin Neurophysiol, 2004, 57: 733- 736.
doi: 10.1016/s1567-424x(09)70414-3 |
71 |
Maciunas RJ , Maddux BN , Riley DE , et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome[J]. J Neurosurg, 2007, 107 (5): 1004- 1014.
doi: 10.3171/JNS-07/11/1004 |
72 |
Boon P , Vonck K , De Herdt V , et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy[J]. Epilepsia, 2007, 48 (8): 1551- 1560.
doi: 10.1111/j.1528-1167.2007.01005.x |
73 | Frank F , Frank G , Gaist G , et al. [Deep brain stimulation in the treatment of chronic pain syndromes][J]. Riv Neurobiol, 1982, 28 (3-4): 309- 316. |
74 |
Lipsman N , Neimat JS , Lozano AM . Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target[J]. Neurosurgery, 2007, 61 (1): 1- 11.
doi: 10.1227/01.neu.0000279719.75403.f7 |
75 |
Schlaepfer TE , Cohen MX , Frick C , et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression[J]. Neuropsychopharmacology, 2008, 33 (2): 368- 377.
doi: 10.1038/sj.npp.1301408 |
76 |
Lozano AM , Fosdick L , Chakravarty MM , et al. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease[J]. J Alzheimers Dis, 2016, 54 (2): 777- 787.
doi: 10.3233/JAD-160017 |
77 | Lee KH, Mosier EM, Blaha CD. Mechanisms of action of deep brain stimulation: a review[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 193-210. |
78 |
Gaskell WH . The electrical changes in the quiescent cardiac muscle which accompany stimulation of the vagus nerve[J]. J Physiol, 1886, 7 (5-6): 451- 452.
doi: 10.1113/jphysiol.1886.sp000235 |
79 | Penry JK , Dean JC . Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results[J]. Epilepsia, 1990, 31 (Suppl 2): S40- S43. |
80 |
George MS , Rush AJ , Marangell LB , et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression[J]. Biol Psychiatry, 2005, 58 (5): 364- 373.
doi: 10.1016/j.biopsych.2005.07.028 |
81 |
Rush AJ , Marangell LB , Sackeim HA , et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial[J]. Biol Psychiatry, 2005, 58 (5): 347- 354.
doi: 10.1016/j.biopsych.2005.05.025 |
82 |
Conway CR , Xiong W . The mechanism of action of vagus nerve stimulation in treatment-resistant depression: current conceptualizations[J]. Psychiatr Clin North Am, 2018, 41 (3): 395- 407.
doi: 10.1016/j.psc.2018.04.005 |
83 | Vonck KEJ, Larsen LE. Vagus nerve stimulation[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 211-220. |
84 | Nitsche MA , Paulus W . Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527 (Pt 3): 633- 639. |
85 | Monte-Silva K , Kuo MF , Hessenthaler S , et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J]. Brain Stimul, 2013, 6 (3): 424- 432. |
86 | Kronberg G , Bridi M , Abel T , et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects[J]. Brain Stimul, 2017, 10 (1): 51- 58. |
87 | Unal G, Bikson M. Transcranial direct current stimulation (tDCS)[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 1589-1610. |
88 |
Elias WJ , Lipsman N , Ondo WG , et al. A randomized trial of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2016, 375 (8): 730- 739.
doi: 10.1056/NEJMoa1600159 |
89 |
Na YC , Chang WS , Jung HH , et al. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease[J]. Neurology, 2015, 85 (6): 549- 551.
doi: 10.1212/WNL.0000000000001826 |
90 |
Jung HH , Kim SJ , Roh D , et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study[J]. Mol Psychiatry, 2015, 20 (10): 1205- 1211.
doi: 10.1038/mp.2014.154 |
91 |
Coluccia D , Fandino J , Schwyzer L , et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound[J]. J Ther Ultrasound, 2014, 2: 17.
doi: 10.1186/2050-5736-2-17 |
92 | Tyler WJ . The mechanobiology of brain function[J]. Nat Rev Neurosci, 2012, 13 (12): 867- 878. |
93 |
Tufail Y , Matyushov A , Baldwin N , et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66 (5): 681- 694.
doi: 10.1016/j.neuron.2010.05.008 |
94 |
Fini M , Tyler WJ . Transcranial focused ultrasound: a new tool for non-invasive neuromodulation[J]. Int Rev Psychiatry, 2017, 29 (2): 168- 177.
doi: 10.1080/09540261.2017.1302924 |
95 |
Deffieux T , Younan Y , Wattiez N , et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23 (23): 2430- 2433.
doi: 10.1016/j.cub.2013.10.029 |
96 |
Panczykowski DM , Monaco EA 3rd , Friedlander RM . Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74 (6): N8.
doi: 10.1227/NEU.00000000-00000365 |
97 |
Lee W , Kim H , Jung Y , et al. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex[J]. Sci Rep, 2015, 5: 8743.
doi: 10.1038/srep08743 |
98 |
Lee W , Kim HC , Jung Y , et al. , Transcranial focused ultrasound stimulation of human primary visual cortex[J]. Sci Rep, 2016, 6: 34026.
doi: 10.1038/srep34026 |
99 |
Chu PC , Chai WY , Tsai CH , et al. Focused ultrasound-induced blood-brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging[J]. Sci Rep, 2016, 6: 33264.
doi: 10.1038/srep-33264 |
100 |
Airan RD , Meyer RA , Ellens NPK , et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions[J]. Nano Lett, 2017, 17 (2): 652- 659.
doi: 10.1021/acs.nanolett.6b03517 |
No related articles found! |
|