山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 42-49, 73.doi: 10.6040/j.issn.1671-7554.0.2020.0391
Ju LIU1,2,*(),Qiang WU1,2,Luyue YU1,Fengming LIN1
摘要:
人工智能技术在计算机视觉与深度学习领域的应用逐渐增多,自动驾驶、无人机、医学临床诊疗等行业都需要基于深度学习的图像分割技术做支撑。本文对近年来脑肿瘤图像分割方法进行综述:首先介绍了图像分割的传统方法和基于深度学习的方法,然后概述了目前几种典型的针对脑肿瘤图像分割方法,描述其主要进展与可借鉴之处,总结了我们在基于深度学习的脑肿瘤图像分割方面的研究结果,并与典型方法的性能进行对比,最后讨论未来研究方向及面临的挑战。
中图分类号:
1 | 李伟峰. 一种新的PSO优化FCM方法在图像分类中的应用[J]. 软件导刊, 2013, 12 (8): 72- 75. |
LI Weifeng . Application of web data ming on accurate prediction of susceptible populations of acute mountain sickness[J]. Software Guide, 2013, 12 (8): 72- 75. | |
2 | 张长水. 机器学习面临的挑战[J]. 中国科学:信息科学, 2013, 43 (12): 1612- 1623. |
3 | 林正春, 王知衍, 张艳青. 最优进化图像阈值分割算法[J]. 计算机辅助设计与图形学学报, 2010, 22 (7): 1201- 1206. |
LIN Zhengchun , WANG Zhiyan , ZHANG Yanqing . Optimal evolution algorithm for image thresholding[J]. Journal of Computer-aided Design & Computer Graphics, 2010, 22 (7): 1201- 1206. | |
4 | 陆剑锋, 林海, 潘志庚. 自适应区域生长算法在医学图像分割中的应用[J]. 计算机辅助设计与图形学学报, 2005, 17 (10): 2168- 2173. |
LU Jianfeng , LIN Hai , PAN Zhigeng . Adaptive region growing algorithm in medical images segmentation[J]. Journal of Computer-aided Design & Computer Graphics, 2005, 17 (10): 2168- 2173. | |
5 | Boykov YY, Jolly MP. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images [C]. Proceedings 8th IEEE International Conference on Computer Vision, 2001: 105-112. |
6 |
Wang Y , Loe KF , Wu JK . A dynamic conditional random field model for foreground and shadow segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28 (2): 279- 289.
doi: 10.1109/TPAMI.2006.25 |
7 | Masooleh MG , Ali S , Moosavi S . An improved fuzzy algorithm for image segmentation[J]. World Academy of Science, Engineering and Technology, 2008, 1 (40): 400- 404. |
8 | Mostajabi M, Yadollahpour P, Shakhnarovich G. Feedforward semantic segmentation with zoom-out features [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3376-3385. |
9 | Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 39 (4): 640- 651. |
10 |
Badrinarayanan V , Kendall A , Cipolla R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615 |
11 | Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1520-1528. |
12 |
Chen LC , Papandreou G , Kokkinos I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184 |
13 | Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-12-5) [2020-3-19]. https://arxiv.org/abs/1706.05587. |
14 | Liu W, Rabinovich A, Berg AC. ParseNet: Looking Wider to See Better [EB/OL]. (2015-11-19) [2020-3-19]. https://arxiv.org/abs/1506.04579. |
15 | Ghiasi G, Fowlkes CC. Laplacian pyramid reconstruction and refinement for semantic segmentation [C]. European Conference on Computer Vision, Springer, Cham, 2016: 519-534. |
16 | Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. |
17 | Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154. |
18 | Hong S, Noh H, Han B. Decoupled deep neural network for semi-supervised semantic segmentation [C]. Advances in Neural Information Processing Systems, 2015: 1495-1503. |
19 | Kolesnikov A, Lampert CH. Seed, expand and constrain: Three principles for weakly-supervised image segmentation [C]. European Conference on Computer Vision, Springer, Cham, 2016: 695-711. |
20 | Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929. |
21 | Lin D, Dai J, Jia J, et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 3159-3167. |
22 |
Cheplygina V , de BM , Pluim JPW . Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis[J]. MedIA, 2019, 54 (1): 280- 296.
doi: 10.1016/j.media.2019.03.009 |
23 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [C]. Advances in Neural Information Processing Systems, 2014: 2672-2680. |
24 | Luc P, Couprie C, Chintala S, et al. Semantic Segmentation using Adversarial Networks [EB/OL]. (2016-11-25) [2020-3-19]. https://arxiv.org/abs/1611.08408. |
25 | Hoffman J, Wang D, Yu F, et al. FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation [EB/OL]. (2016-12-8) [2020-3-19]. https://arxiv.org/abs/1612.02649. |
26 | Souly N, Spampinato C, Shah M. Semi supervised semantic segmentation using generative adversarial network [C]. 2017 IEEE International Conference on Computer Vision, 2017: 5689-5697. |
27 | Tsai YH, Hung WC, Schulter S, et al. Learning to adapt structured output space for semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7472-7481. |
28 | Gamal M, Siam M, Abdel-Razek M. ShuffleSeg: Real-time Semantic Segmentation Network [EB/OL]. (2018-3-15) [2020-3-19]. https://arxiv.org/abs/1803.03816. |
29 | 田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44 (3): 401- 424. |
TIAN Xiujuan , LIU Guocai , GU Shanshan , et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44 (3): 401- 424. | |
30 | Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Cham, 2015: 234-241. |
31 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
32 | Huang G, Liu Z, Van DML, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. |
33 |
Alom MZ , Yakopcic C , Hasan M , et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6 (1): 345- 350.
doi: 10.1117/1.JMI.6.1.014006 |
34 | Oktay O, Schlemper J, Folgoc LL, et al. Attention u-net: Learning where to look for the pancreas[EB/OL]. (2018-5-20) [2020-3-19]. https://arxiv.org/abs/1804.03999. |
35 | Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization[C]. International MICCAI Brainlesion Workshop, Springer, Cham, 2018: 311-320. |
36 | Zhou C, Chen S, Ding C, et al. Learning contextual and attentive information for brain tumor segmentation[C]. International MICCAI Brainlesion Workshop, Springer, Cham, 2018: 497-507. |
37 | McKinley R, Meier R, Wiest R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation[C]. International MICCAI Brainlesion Workshop, Springer, Cham, 2018: 456-465. |
38 | Kong X, Sun G, Wu Q, et al. Hybrid pyramid U-Net model for brain tumor segmentation[C]. International Conference on Intelligent Information Processing, Springer, Cham, 2018: 346-355. |
39 | Lin F, Wu Q, Liu J, et al. Path aggregation U-Net model for brain tumor segmentation[EB/OL]. (2020-03-19) [2020-03-19]. https://doi.org/10.1007/s11042-020-08795-9. |
40 | Lin F, Liu J, Wu Q, et al. FMNet: Feature mining networks for brain tumor segmentation[C]. IEEE 31st International Conference on Tools with Artificial Intelligence, IEEE Computer Society, 2019: 555-560. |
[1] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 58(8): 1-4. |
[2] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 58(8): 5-9, 21. |
|