您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 14-21.doi: 10.6040/j.issn.1671-7554.0.2019.1503

• 脑科学与类脑智能研究专题 • 上一篇    下一篇

阿尔兹海默病的智能诊断方法

尹义龙1,*(),袭肖明2,孟宪静3   

  1. 1. 山东大学软件学院机器学习与数据挖掘实验室,山东 济南250101
    2. 山东建筑大学计算机科学与技术学院,山东 济南 250101
    3. 山东财经大学计算机科学与技术学院,山东 济南 250014
  • 收稿日期:2019-12-27 出版日期:2020-08-07 发布日期:2020-08-07
  • 通讯作者: 尹义龙 E-mail:ylyin@sdu.edu.cn
  • 作者简介:尹义龙,教授、博士研究生导师,主要从事人工智能、机器学习、数据挖掘领域的研究工作。现担任中国计算机学会人工智能与模式识别专委会常委、副秘书长,中国人工智能学会机器学习专委会常委、副秘书长,山东省人工智能学会理事长,山东省大数据研究会副会长等学术兼职。入选教育部新世纪优秀人才支持计划,获得山东省自然科学杰出青年基金资助。主持国家自然科学基金重点项目1项,国家重点研发专项课题1项、面上项目3项、青年项目1项,主持省部级科研项目11项。在《IEEE Trans Knowl Data En》《IEEE Trans Image Processing》《Pattern Recogn 》《IEEE Trans Multimedia》等国际期刊和AAAI、IJCAI、CVPR、MM、SIGIR、IPMI、MICCAI等国际会议发表论文80余篇。获山东省科技进步二等奖2项(第一完成人)。
  • 基金资助:
    国家自然科学基金(61876098);国家自然科学基金(61701280);国家自然科学基金(61801263);国家重点研发专项计划(2018YFC0830102)

Intelligent diagnosis methods of Alzheimer's disease

Yilong YIN1,*(),Xiaoming XI2,Xianjing MENG3   

  1. 1. MLA Lab in School of Software, Shandong University, Jinan 250101, Shandong, China
    2. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China
    3. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Received:2019-12-27 Online:2020-08-07 Published:2020-08-07
  • Contact: Yilong YIN E-mail:ylyin@sdu.edu.cn

摘要:

随着人口老龄化的日渐严重,阿尔兹海默病(AD)的相关研究已成为重要的公共卫生课题。然而,目前尚无药物能够治愈AD,早发现、早治疗有助于延缓该疾病的发展。在众多的AD辅助诊断工具中,神经影像对于AD的早期诊断具有重要作用,已成为一个热门的研究课题。对基于神经影像的AD智能诊断方法进行综述,从基于单模态影像的智能AD诊断和多模态融合的智能AD诊断两方面对现有方法进行了分析,并对未来的研究方向进行了展望,有利于为AD的诊断提供新观点和新思路。

关键词: 阿尔兹海默病, 神经影像, 智能诊断

Abstract:

As the number of elderly people increases, Alzheimer's disease (AD) has become a tremendous economic and societal burden. The research on AD has been considered an important global public health topic. However, there is currently no cure for AD; therefore, early detection is very helpful for the diagnosis. Neuroimaging plays an important role for the early diagnosis of AD among all detection tools and has attracted great attention in recent years. In order to provide new insights into the intelligent diagnosis methods of AD, this paper reviews the recent advances including methods based on single-modality and multi-modality and discusses the future work.

Key words: Alzheimer's disease, Neuroimaging, Intelligent diagnosis

中图分类号: 

  • R574

表1

现有AD诊断数据库简介"

数据库 包含模态 包含分组
ADNI MRI、PET、生物标记、临床评估分值等 NC、MCI、AD
OASIS MRI NC、轻中度AD
MIRIAD MRI、MMSE等 NC、轻中度AD
AIBL PET、CSF NC、MCI、AD

图1

现有AD诊断方法分类"

1 Thies W , Bleiler L . 2012 Alzheimer's disease facts and figures Alzheimer's Association[J]. Alzheimers & Dement, 2012, 8 (2): 131- 168.
2 The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends: world Alzheimer report[R]. London: Alzheimer's Disease International, 2015.
3 滕玉环, 周红, 张志珺. 阿尔茨海默病早期诊断生物学指标研究进展[J]. 中华脑血管病杂志(电子版), 2010, 4 (6): 24- 27.
TENG Yuhuan , ZHOU Hong , ZHANG Zhijun . Biomakers of early diagnosis of Alzheimer's disease[J]. Chinese Journal of Cerebrovascular Disease(Electronic Version), 2010, 4 (6): 24- 27.
4 Jagust W . Vulnerable neural systems and the borderland of brain aging and neurodegeneration[J]. Neuron, 2013, 77 (2): 219- 234.
doi: 10.1016/j.neuron.2013.01.002
5 Rathore S , Habes M , Iftikhar MA , et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. Neuroimage, 2017, 155: 530- 548.
doi: 10.1016/j.neuroimage.2017.03.057
6 Frisoni GB , Fox NC , Jack Jr CR , et al. The clinical use of structural MRI in Alzheimer disease[J]. Nat Rev Neurol, 2010, 6 (2): 67- 77.
7 Petrella JR , Coleman RE , Doraiswamy PM . Neuroimaging and early diagnosis of Alzheimer disease: a look to the future[J]. Radiology, 2003, 226 (2): 315- 336.
doi: 10.1148/radiol.2262011600
8 Rosen WG , Mohs RC , Davis KL , et al. A new rating scale for Alzheimer's disease[J]. Am J Psychiat, 1984, 141 (11): 1356- 1364.
doi: 10.1176/ajp.141.11.1356
9 Lian C , Liu M , Zhang J , et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42 (4): 880- 893.
doi: 10.1109/TPAMI.2018.2889096
10 Mueller SG , Weiner MW , Thal LJ , et al. The Alzheimer's disease neuroimaging initiative[J]. Neuroimag Clin N Am, 2005, 15 (4): 869- 877.
doi: 10.1016/j.nic.2005.09.008
11 Jack Jr CR , Bernstein MA , Fox NC , et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging, 2008, 27 (4): 685- 691.
doi: 10.1002/jmri.21049
12 Marcus DS , Fotenos AF , Csernansky JG , et al. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults[J]. J Cognitive Neurosci, 2010, 22 (12): 2677- 2684.
doi: 10.1162/jocn.2009.21407
13 Malone IB , Cash D , Ridgway GR , et al. MIRIAD—Public release of a multiple time point Alzheimer's MR imaging dataset[J]. Neuroimage, 2013, 70: 33- 36.
doi: 10.1016/j.neuroimage.2012.12.044
14 Ellis KA , Rowe CC , Villemagne VL , et al. Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative[J]. Alzheimers Dement, 2010, 6 (3): 291- 296.
doi: 10.1016/j.jalz.2010.03.009
15 Glahn DC , Thompson PM , Blangero J . Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function[J]. Human Brain Mapping, 2007, 28 (6): 488- 501.
doi: 10.1002/hbm.20401
16 Buckner RL . Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate[J]. Neuron, 2004, 44 (1): 195- 208.
doi: 10.1016/j.neuron.2004.09.006
17 Klöppel S , Stonnington CM , Chu C , et al. Automatic classification of MR scans in Alzheimer's disease[J]. Brain, 2008, 131 (3): 681- 689.
doi: 10.1093/brain/awm319
18 Li S , Yuan X , Pu F , et al. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients[J]. J Neurosci, 2014, 34 (32): 10541- 10553.
doi: 10.1523/JNEUROSCI.4356-13.2014
19 Möller C , Pijnenburg YAL , van der Flier WM , et al. Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis[J]. Radiology, 2015, 279 (3): 838- 848.
20 Liu X , Tosun D , Weiner MW , et al. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. Neuroimage, 2013, 83: 148- 157.
doi: 10.1016/j.neuroimage.2013.06.033
21 Salvatore C , Cerasa A , Battista P , et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach[J]. Front Neurosci, 2015, 9: 307.
doi: 10.3389/fnins.2015.00307
22 Magnin B , Mesrob L , Kinkingnéhun S , et al. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI[J]. Neuroradiology, 2009, 51 (2): 73- 83.
23 Zhu X , Suk HI , Wang L , et al. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis[J]. Medical Image Anal, 2017, 38: 205- 214.
doi: 10.1016/j.media.2015.10.008
24 Long Z , Huang J , Li B , et al. A comparative atlas-based recognition of mild cognitive impairment with voxel-based morphometry[J]. Front Neurosci, 2018, 12: 916.
doi: 10.3389/fnins.2018.00916
25 Liu M , Zhang D , Shen D , et al. Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis[J]. Human Brain Mapping, 2014, 35 (4): 1305- 1319.
doi: 10.1002/hbm.22254
26 Tong T , Wolz R , Gao Q , et al. Multiple instance learning for classification of dementia in brain MRI[J]. Med Image Anal, 2014, 18 (5): 808- 818.
doi: 10.1016/j.media.2014.04.006
27 Zhang J , Gao Y , Gao Y , et al. Detecting anatomical landmarks for fast Alzheimer's disease diagnosis[J]. IEEE T Med Imaging, 2016, 35 (12): 2524- 2533.
doi: 10.1109/TMI.2016.2582386
28 Tanveer M , Richhariya B , Khan RU , et al. Machine learning techniques for the diagnosis of Alzheimer's disease: a review[J]. ACM T Multim Comput, 2019, 16 (1): 35.
29 Sanzarigita EJ , Schoonheim MM , Damoiseaux JS , et al. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity[J]. PLoS One, 2010, 5 (11): e13788.
doi: 10.1371/journal.pone.0013788
30 Karwowski W , Vasheghani Farahani F , Lighthall N . Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review[J]. Front Neurosci, 2019, 13: 585.
doi: 10.3389/fnins.2019.00585
31 Chen G , Ward BD , Xie C , et al. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J]. Radiology, 2011, 259 (1): 213- 221.
32 Wang Z , Zheng Y , Zhu DC , et al. Classification of Alzheimer's disease, mild cognitive impairment and normal control subjects using resting-state fMRI Based network Connectivity analysis[J]. IEEE J Transl Eng Health Med, 2018, 6: 1801009.
doi: 10.1109/JTEHM.2018.2874887
33 Jie B , Zhang D , Gao W , et al. Integration of network topological and connectivity properties for neuroimaging classification[J]. IEEE Trans Biomed Eng, 2013, 61 (2): 576- 589.
34 Tong T , Gray KR , Gao Q , et al. Multi-modal classification of Alzheimer's disease using nonlinear graph fusion[J]. Pattern Recognit, 2017, 171- 181.
35 Lian C , Liu M , Zhang J , et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE T Pattern Anal, 2020, 42 (4): 880- 893.
doi: 10.1109/TPAMI.2018.2889096
36 Shi Y , Suk H , Gao Y , et al. Leveraging coupled interaction for multimodal Alzheimer's disease diagnosis[J]. IEEE T Neural Network, 2020, 31 (1): 186- 200.
37 Kohannim O , Hua X , Hibar DP , et al. Boosting power for clinical trials using classifiers based on multiple biomarkers[J]. Neurobiol Aging, 2010, 31 (8): 1429- 1442.
doi: 10.1016/j.neurobiolaging.2010.04.022
38 Walhovd KB , Fjell AM , Brewer JB , et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease[J]. Am J Neuroradiol, 2010, 31 (2): 347- 354.
doi: 10.3174/ajnr.A1809
39 Westman E , Muehlboeck J , Simmons A , et al. Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion[J]. Neuroimage, 2012, 62 (1): 229- 238.
doi: 10.1016/j.neuroimage.2012.04.056
40 Zhang D , Wang Y , Zhou L , et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage, 2011, 55 (3): 856- 867.
doi: 10.1016/j.neuroimage.2011.01.008
41 Suk H , Shen D . Subclass-based multi-task learning for Alzheimer's disease diagnosis[J]. Front Aging Neurosci, 2014, 6: 168- 168.
doi: 10.3389/fnagi.2014.00168
42 Suk H , Lee S , Shen D , et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. Neuroimage, 2014, 101: 569- 582.
doi: 10.1016/j.neuroimage.2014.06.077
43 Jie B , Liu M , Zhang D , et al. Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis[J]. IEEE Trans Image Process, 2018, 27 (5): 2340- 2353.
doi: 10.1109/TIP.2018.2799706
44 Liu J , Wang J , Tang Z , et al. Improving Alzheimer's disease classification by combining multiple measures[J]. IEEE/ACM Trans Comput Biol Bioinf, 2018, 15 (5): 1649- 1659.
doi: 10.1109/TCBB.2017.2731849
45 Hinrichs C , Singh V , Xu G , et al. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population[J]. Neuroimage, 2011, 55 (2): 574- 589.
doi: 10.1016/j.neuroimage.2010.10.081
46 Kim J , Lee B . Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Hum Brain Mapp, 2018, 39 (9): 3728- 3741.
doi: 10.1002/hbm.24207
47 Zhang W , Luo T , Qiu S , et al. Identifying genetic risk factors for Alzheimer's disease via shared tree-guided feature learning across multiple tasks[J]. IEEE Trans Knowl Data Eng, 2018, 30 (11): 2145- 2156.
48 Xu J, Deng C, Gao X, et al. Predicting Alzheimer's disease cognitive assessment via robust low-rank structured sparse model[C]. IJCAI(US), 2017: 3880-3886.
49 Zhu X , Suk H , Lee S , et al. Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification[J]. IEEE Trans Biomed Eng, 2016, 63 (3): 607- 618.
doi: 10.1109/TBME.2015.2466616
50 Ye T , Zu C , Jie B , et al. Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease[J]. Brain Imaging Behav, 2016, 10 (3): 739- 749.
doi: 10.1007/s11682-015-9437-x
51 Cao P , Liu X , Liu H , et al. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease[J]. Comput Meth Prog Bio, 2018, 162: 19- 45.
doi: 10.1016/j.cmpb.2018.04.028
52 Zhou T , Thung K , Liu M , et al. Brain-Wide genome-wide association study for Alzheimer's disease via joint projection learning and sparse regression model[J]. IEEE Trans Biomed Eng, 2019, 66 (1): 165- 175.
doi: 10.1109/TBME.2018.2824725
53 Wang M , Zhang D , Shen D , et al. Multi-task exclusive relationship learning for Alzheimer's disease progression prediction with longitudinal data[J]. Med Image Anal, 2019, 53: 111- 122.
doi: 10.1016/j.media.2019.01.007
54 Liu M , Zhang J , Adeli E , et al. Joint classification and regression via deep multi-Task multi-Channel learning for Alzheimer's disease diagnosis[J]. IEEE Trans Biomedi Eng, 2019, 66 (5): 1195- 1206.
doi: 10.1109/TBME.2018.2869989
55 Liu M , Zhang D , Shen D , et al. Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment[J]. IEEE Trans Medi Imaging, 2016, 35 (6): 1463- 1474.
doi: 10.1109/TMI.2016.2515021
56 Li W , Zhang L , Qiao L , et al. Towards a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view[J]. IEEE J Biomed Health Inform, 2019, 24 (4): 1160- 1168.
57 Cheng B , Liu M , Shen D , et al. Multi-domain transfer learning for early diagnosis of Alzheimer's disease[J]. Neuroinf, 2017, 15 (2): 115- 132.
doi: 10.1007/s12021-016-9318-5
58 Cheng B , Liu M , Suk H , et al. Multimodal manifold-regularized transfer learning for MCI conversion prediction[J]. Brain Imaging Behav, 2015, 9 (4): 913- 926.
doi: 10.1007/s11682-015-9356-x
59 Cheng B , Liu M , Zhang D , et al. Domain transfer learning for MCI conversion prediction[J]. IEEE Trans Biomed Eng, 2015, 62 (7): 1805- 1817.
doi: 10.1109/TBME.2015.2404809
60 Filipovych R , Davatzikos C . Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)[J]. Neuroimage, 2011, 55 (3): 1109- 1119.
doi: 10.1016/j.neuroimage.2010.12.066
[1] 余新光,张艳阳. 脑深部电刺激术在阿尔兹海默病中的应用进展[J]. 山东大学学报 (医学版), 2020, 58(8): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 58(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 58(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 58(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 58(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 58(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 58(7): 67 -71 .