您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (8): 10-13.doi: 10.6040/j.issn.1671-7554.0.2020.0577

• 脑科学与类脑智能研究专题 • 上一篇    下一篇

类脑智能在脑科学的前沿应用

江涛1,2,*()   

  1. 1. 北京市神经外科研究所,北京100071
    2. 首都医科大学附属北京天坛医院神经外科,北京100071
  • 收稿日期:2020-04-13 出版日期:2020-08-07 发布日期:2020-08-07
  • 通讯作者: 江涛 E-mail:taojiang1964@163.com
  • 作者简介:江涛,教授,主任医师,博士研究生导师,现任北京市神经外科研究所副所长,首都医科大学附属北京天坛医院神经外科中心副主任。牵头创建了中国抗癌协会脑胶质瘤专业委员会、中国医师协会脑胶质瘤专业委员会,并担任两个委员会首任主任委员,是中国脑胶质瘤基因图谱计划(CGGA)发起者和创始人之一。担任《Neuro-Oncology》等国外期刊学术编辑。曾担任全球脑胶质瘤适应性临床创新试验体系(AGILE)中方主席。共发表SCI论文160余篇,代表论文发表在《Cell》《Neuro-oncology》《Genome Research》《PNAS》等知名期刊。曾以第一完成人获国家科学技术进步二等奖,2019年荣获“北京学者”称号。

The application of brain-like intelligence in the frontiers of brain science

Tao JIANG1,2,*()   

  1. 1. Beijing Neurosurgical Institute, Beijing 100070, China
    2. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
  • Received:2020-04-13 Online:2020-08-07 Published:2020-08-07
  • Contact: Tao JIANG E-mail:taojiang1964@163.com

摘要:

脑科学与类脑科学研究,简称“脑计划”,是未来生命科学研究的重要方向。神经外科作为惟一能够直接接触到大脑的学科,在完成“脑计划”的工作中势必会起到至关重要的作用。神经外科功能区定位技术包括影像学技术和电生理技术。将人工智能技术与功能区定位技术相结合,有助于加快“脑计划”的完成。

关键词: 脑科学, 类脑智能, 脑胶质瘤, 脑计划, 脑功能

Abstract:

Brain science and brain-like intelligence technology are promising for life science research in the future. Neurosurgery, as the only discipline with direct access to the brain, is bound to play a crucial role in the human brain project. Identifying technologies in neurosurgery include neuro-radiological and electrophysiological techniques. Combination of artificial intelligence and identifying technologies helps to accelerate the completion of the human brain project.

Key words: Brain science, Brain-like intelligence, Glioma, Human brain project, Brain function

中图分类号: 

  • R651
1 张华, 詹启敏. 脑计划与精准医学[J]. 中国研究型医院, 2016, 3 (6): 18- 21.
2 江涛. 神经外科功能区定位技术助力"脑计划"研究[J]. 中华神经外科疾病研究杂志, 2018, 17 (5): 385- 386.
3 Duffau H . The error of Broca: from the traditional localizationist concept to a connectomal anatomy of human brain[J]. J Chem Neuroanat, 2017, 89: 73- 81.
doi: 10.1016/j.jchemneu.2017.04.003
4 Fang S , Bai HX , Fan X , et al. A novel sequence: ZOOMit-blood oxygen level-dependent for motor-cortex localization[J]. Neurosurgery, 2020, 86 (2): E124- E132.
5 江涛, 陈新忠, 谢坚, 等. 功能区胶质瘤的术中直接电刺激判断核心手术技术[J]. 中国微侵袭神经外科杂志, 2005, 10 (4): 148- 150.
6 Herbet G , Moritz-Gasser S , Boiseau M , et al. Converging evidence for a cortico-subcortical network mediating lexical retrieval[J]. Brain, 2016, 139 (11): 3007- 3021.
doi: 10.1093/brain/aww220
7 Rech F , Herbet G , Gaudeau Y , et al. A probabilistic map of negative motor areas of the upper limb and face: a brain stimulation study[J]. Brain, 2019, 142 (4): 952- 965.
doi: 10.1093/brain/awz021
8 Tate MC , Herbet G , Moritz-Gasserss S , et al. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited[J]. Brain, 2014, 137 (Pt 10): 2773- 2782.
9 Liang X , Wang J , He Y . Human connectome: Structural and functional brain networks[J]. Chinese Science Bulletin, 2010, 55 (16): 1565- 1583.
doi: 10.1360/972009-2150
10 Fang S , Li Y , Wang Y. , et al. Awake craniotomy for gliomas involving motor-related areas: classification and function recovery[J]. J Neurooncol, 2020, 148 (2): 317- 325.
doi: 10.1007/s11060-020-03520-w
11 Li Y , Liang Y , Sun Z , et al. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging[J]. Neuroradiology, 2019, 61 (11): 1229- 1237.
doi: 10.1007/s00234-019-02244-7
12 Li Y , Liu X , Qian Z , et al. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature[J]. Eur Radiol, 2018, 28 (7): 2960- 2968.
doi: 10.1007/s00330-017-5267-0
13 Li Y , Liu X , Xu K , et al. MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis[J]. Eur Radiol, 2018, 28 (1): 356- 362.
doi: 10.1007/s00330-017-4964-z
14 Li Y , Qian Z , Xu K , et al. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach[J]. Neuroimage Clin, 2018, 17: 306- 311.
doi: 10.1016/j.nicl.2017.10.030
15 Liu X , Li Y , Li S , et al. IDH mutation-specific radiomic signature in lower-grade gliomas[J]. Aging (Albany NY), 2019, 11 (2): 673- 696.
16 Wang K , Wang Y , Fan X , et al. Regional specificity of 1p/19q co-deletion combined with radiological features for predicting the survival outcomes of anaplastic oligodendroglial tumor patients[J]. J Neurooncol, 2018, 136 (3): 523- 531.
doi: 10.1007/s11060-017-2673-8
17 Qian Z , Li Y , Fan X , et al. Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas[J]. Oncoimmunology, 2018, 7 (6): e1434466.
doi: 10.1080/2162402X.2018.1434466
18 Liu X , Li Y , Qian Z , et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas[J]. Neuroimage Clin, 2018, 20: 1070- 1077.
doi: 10.1016/j.nicl.2018.10.014
19 Qian Z , Li Y , Fan X , et al. Prognostic value of a microRNA signature as a novel biomarker in patients with lower-grade gliomas[J]. J Neurooncol, 2018, 137 (1): 127- 137.
doi: 10.1007/s11060-017-2704-5
20 Qian Z , Li Y , Sun Z , et al. Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction[J]. Aging (Albany NY), 2018, 10 (10): 2884- 2899.
21 Wang Y , Wei W , Liu Z , et al. Predicting the type of tumor-related epilepsy in patients with low-grade gliomas: a radiomics study[J]. Front Oncol, 2020, 10: 235.
doi: 10.3389/fonc.2020.00235
22 Murray NM , Unberath M , Hager GD , et al. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review[J]. J Neurointerv Surg, 2020, 12 (2): 156- 164.
doi: 10.1136/neurintsurg-2019-015135
23 Zhou LQ , Wu XL , Huang SY , et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294 (1): 19- 28.
24 Fitzgerald RC . Big data is crucial to the early detection of cancer[J]. Nat Med, 2020, 26 (1): 19- 20.
doi: 10.1038/s41591-019-0725-7
25 Abbasi J . Artificial intelligence improves breast cancer screening in study[J]. JAMA, 2020, 323 (6): 499.
doi: 10.1001/jama.2020.0370
26 Vogel JW , Vachon-Presseau E , Binette AP , et al. Brain properties predict proximity to symptom onset in sporadic Alzheimer's disease[J]. Brain, 2018, 141 (6): 1871- 1883.
doi: 10.1093/brain/awy093
27 Wildman-Tobriner B , Buda M , Hoang JK , et al. Using artificial intelligence to revise ACR TI-RADS risk stratification of thyroid nodules: diagnostic accuracy and utility[J]. Radiology, 2019, 292 (1): 112- 119.
doi: 10.1148/radiol.2019182128
28 Lin L , Dou Q , Jin YM , et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291 (3): 677- 686.
doi: 10.1148/radiol.2019182012
29 Abbasi J . "Electronic nose" predicts immunotherapy response[J]. JAMA, 2019, 322 (18): 1756.
30 Esteva A , Brett K , Novoa RA , et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542 (7639): 115- 118.
doi: 10.1038/nature21056
31 Leslie-Mazwi TM , Lev MH . Towards artificial intelligence for clinical stroke care[J]. Nat Rev Neurol, 2020, 16 (1): 5- 6.
doi: 10.1038/s41582-019-0287-9
32 McKinney SM , Sieniek M , Godbole V , et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577 (7788): 89- 94.
doi: 10.1038/s41586-019-1799-6
33 Park CM . Can artificial intelligence fix the reproducibility problem of radiomics?[J]. Radiology, 2019, 292 (2): 374- 375.
[1] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 58(8): 5-9, 21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 58(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 58(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 58(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 58(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 58(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 58(7): 67 -71 .