山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (12): 118-124.doi: 10.6040/j.issn.1671-7554.0.2025.0340
• 综述 • 上一篇
齐在文1,白霄2,秦源3
QI Zaiwen1, BAI Xiao2, QIN Yuan3
摘要: 移植静脉内膜增生是冠状动脉旁路移植术后常见的并发症,但其发生机制和防治策略尚不完全清楚。周期性张应力作为一种血管壁所受的机械力刺激,在静脉移植后会显著升高。升高的周期性张应力通过表观遗传机制影响各类基因表达产物的含量,同时调节细胞的各类生物学功能,最终导致内膜增生的发生。本文阐述了周期性张应力在静脉移植后内膜增生中的作用机制和干预措施,为内膜增生的防治提供了新的视角。
中图分类号:
| [1] Persson J, Yan J, Angerås O, et al. PCI or CABG for left main coronary artery disease: the SWEDEHEART registry[J]. Eur Heart J, 2023, 44(30): 2833-2842. [2] Gaudino M, Benedetto U, Fremes S, et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery[J]. N Engl J Med, 2018, 378(22): 2069-2077. [3] Xenogiannis I, Zenati M, Bhatt DL, et al. Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies[J]. Circulation, 2021, 144(9): 728-745. [4] Zhou Y, Sharma S, Sun X, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin [J]. Cell Mol Life Sci, 2023, 80(9):264. [5] Zeng Z, Xia LX, Fan SY, et al. Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation[J]. Circulation, 2021, 143(4): 354-371. [6] 王蕾艳, 宋尚明, 张红雨, 等. 联合转染VEGF和PCNA-ASODN对血管成形术后再狭窄的影响[J]. 山东大学学报(医学版), 2011, 49(5): 38-42. WANG Leiyan, SONG Shangming, ZHANG Hongyu, et al. Effect of co-transfection of VEGF and PCNA-ASODN on restenosis after percutaneous transluminal coronary angioplasty[J]. Journal of Shandong University(Health Sciences), 2011, 49(5): 38-42. [7] McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease[J]. Int J Biochem Cell Biol, 2022, 144: 106173. doi: 10.1016/j.biocel.2022.106173 [8] 张红萍, 赵川榕, 王贵学. 血管生物力学与力学生物学研究进展[J]. 医用生物力学, 2024, 39(1): 17-23. doi: 10.16156/j.1004-7220.2024.01.003 ZHANG Hongping, ZHAO Chuanrong, WANG Guixue. Advances in vascular biomechanics and mechanobiology[J]. Journal of Medical Biomechanics, 2024, 39(1): 17-23. [9] Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape[J]. Cell, 2007, 128(4): 635-638. [10] Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. doi: 10.1016/j.bbagrm.2019.194417 [11] 万树威, 李震, 曹辉. 大鼠自体移植静脉差异表达microRNA及其生物信息学分析[J]. 中国普通外科杂志, 2019, 28(12): 1490-1496. WAN Shuwei, LI Zhen, CAO Hui. Differentially expressed microRNAs in rat autologous vein graft and their bioinformatics analysis[J]. Chinese Journal of General Surgery, 2019, 28(12): 1490-1496. [12] Huang K, Bao H, Yan ZQ, et al. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein [J]. Cardiovasc Res, 2017, 113(5): 488-497. [13] Cooley BC, Nevado J, Mellad J, et al. TGF-β signaling mediates endothelial-to-mesenchymal transition(EndMT)during vein graft remodeling[J]. Sci Transl Med, 2014, 6(227): 227ra34. doi: 10.1126/scitranslmed.3006927 [14] Liu JT, Liu Z, Chen Y, et al. microRNA-29a involvement in phenotypic transformation of venous smooth muscle cells via ten-eleven translocation methylcytosinedioxygenase 1 in response to mechanical cyclic stretch[J]. J Biomech Eng, 2020, 142(5): 051009. doi: 10.1115/1.4044581 [15] Pan HZ, Xue CY, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075. [16] Chen L, Wei K, Li J, et al. Integrated analysis of LncRNA-mediated CeRNA network in calcific aortic valve disease[J]. Cells, 2022, 11(14): 2204. doi: 10.3390/cells11142204 [17] Liu JT, Yao QP, Chen Y, et al. Arterial cyclic stretch regulates Lamtor1 and promotes neointimal hyperplasia via circSlc8a1/miR-20a-5p axis in vein grafts[J]. Theranostics, 2022, 12(11): 4851-4865. [18] Huang ZH, Winata WA, Zhang K, et al. Reconstruction of a lncRNA-associated CeRNA network in endothelial cells under circumferential stress[J]. Cardiol Res Pract, 2020, 2020: 1481937. doi: 10.1155/2020/1481937 [19] Park SM, Lee JH, Ahn KS, et al. Cyclic stretch promotes cellular reprogramming process through cytoskeletal-nuclear mechano-coupling and epigenetic modification[J]. Adv Sci(Weinh), 2023, 10(32): e2303395. doi: 10.1002/advs.202303395 [20] Bae HJ, Shin SJ, Jo SB, et al. Cyclic stretch induced epigenetic activation of periodontal ligament cells[J]. Mater Today Bio, 2024, 26: 101050. doi: 10.1016/j.mtbio.2024.101050 [21] 段琦, 李亚峰, 王振峰. 尿毒症患者血清通过ROS- NLRP3信号通路促进人主动脉平滑肌细胞增殖参与新生内膜增生[J]. 中国分子心脏病学杂志, 2024, 24(3): 6110-6115. DUAN Qi, LI Yafeng, WANG Zhenfeng. Uremia serum promotes the proliferation of human aortic smooth muscle cells through the ROS- NLRP3 signaling pathway and participates in neointimal hyperplasia[J]. Molecular Cardiology of China, 2024, 24(3): 6110-6115. [22] Tang YJ, Jia YT, Fan LW, et al. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1[J]. Circ Res, 2022, 130(11): e26-e43. [23] Feng SD, Gao L, Zhang DH, et al. miR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2[J]. Int J Biol Sci, 2019, 15(12): 2615-2626. [24] Chang YJ, Huang HC, Hsueh YY, et al. Role of excessive autophagy induced by mechanical overload in vein graft neointima formation: prediction and prevention[J]. Sci Rep, 2016, 6: 22147. doi: 10.1038/srep22147 [25] Chen Y, Bao M, Liu JT, et al. Defective autophagy triggered by arterial cyclic stretch promotes neointimal hyperplasia in vein grafts via the p62/nrf2/slc7a11 signaling pathway[J]. J Mol Cell Cardiol, 2022, 173: 101-114. doi: 10.1016/j.yjmcc.2022.10.001 [26] Campos LC, Ribeiro-Silva JC, Menegon AS, et al. Cyclic stretch-induced Crp3 sensitizes vascular smooth muscle cells to apoptosis during vein arterialization remodeling [J]. Clin Sci, 2018, 132(4): 449-459. [27] Cicha I, Yilmaz A, Klein M, et al. Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro[J]. Arterioscler Thromb Vasc Biol, 2005, 25(5): 1008-1013. [28] Yan J, Wang WB, Fan YJ, et al. Cyclic stretch induces vascular smooth muscle cells to secrete connective tissue growth factor and promote endothelial progenitor cell differentiation and angiogenesis[J]. Front Cell Dev Biol, 2020, 8: 606989. doi: 10.3389/fcell.2020.606989 [29] Han Y, Yan J, Li ZY, et al. Cyclic stretch promotes vascular homing of endothelial progenitor cells via Acsl1 regulation of mitochondrial fatty acid oxidation[J]. Proc Natl Acad Sci USA, 2023, 120(6): e2219630120. doi: 10.1073/pnas.2219630120 [30] Shi Y, Li DH, Yi BC, et al. Physiological cyclic stretching potentiates the cell-cell junctions in vascular endothelial layer formed on aligned fiber substrate[J]. Biomater Adv, 2024, 157: 213751. doi: 10.1016/j.bioadv.2023.213751 [31] Zhang DS, Cao YR, Liu DX, et al. The etiology and molecular mechanism underlying smooth muscle phenotype switching in intimal hyperplasia of vein graft and the regulatory role of microRNAs[J]. Front Cardiovasc Med, 2022, 9: 935054. doi: 10.3389/fcvm.2022.935054 [32] Nakagawa A, Hayakawa S, Cheng YL, et al. Cyclic stretch regulates immune responses via tank-binding kinase 1 expression in macrophages[J]. FEBS Open Bio, 2023, 13(1): 185-194. [33] Atcha H, Meli VS, Davis CT, et al. Crosstalk between CD11b and Piezo1 mediates macrophage responses to mechanical cues[J]. Front Immunol, 2021, 12: 689397. doi: 10.3389/fimmu.2021.689397 [34] Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells[J]. Arterioscler Thromb Vasc Biol, 1998, 18(6): 894-901. [35] Yamamoto H, Teramoto H, Uetani K, et al. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells[J]. Respirology, 2002, 7(2): 103-109. [36] Yang Q, Lei D, Huang SX, et al. A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways[J]. Biomaterials, 2020, 258: 120254. doi: 10.1016/j.biomaterials.2020.120254 [37] Ding L, Hang C, Cheng SY, et al. A soft, conductive external stent inhibits intimal hyperplasia in vein grafts by electroporation and mechanical restriction[J]. ACS Nano, 2020, 14(12): 16770-16780. [38] Dillavou ED, Lucas JF, Woodside K, et al. VasQ U.S. pivotal study demonstrates the safety and effectiveness of an external vascular support for arteriovenous fistula creation[J]. J Vasc Surg, 2023, 78(5): 1302-1312. [39] Yasuda S, Goda M, Shibuya T, et al. An appropriately sized soft polyester external stent prevents enlargement and neointimal hyperplasia of a saphenous vein graft in a canine model[J]. Artif Organs, 2019, 43(6): 577-583. [40] Shirasu T, Urabe G, Yodsanit N, et al. Nano-based perivascular intervention sustains a nine-month long-term suppression of intimal hyperplasia in vein grafts[J]. Bioact Mater, 2025, 44: 82-96. doi:10.1016/j.bioactmat.2024.10.1005 |
| [1] | 国科,陈绪军,施超,罗俊辉,杨岷,王晓武,王振东,李有金,孟春营,陈文生. 游离右内乳动脉与桡动脉构建Y桥在全动脉冠脉旁路移植术多中心应用效果[J]. 山东大学学报 (医学版), 2025, 63(9): 84-91. |
| [2] | 国科,陈绪军,郑宝石,施超,黄克力,曹勇,陈军,吴东凯,张晓慎,罗俊辉,申林,莫绪明,杨岷,王晓武,雷印胜,田茂州,王振东,孟自力,孙忠东,李有金,陆辉辉,孟春营,高峰,陈黔苏,郭能瑞,柳德斌,张楠,林宇,陈文生,宋保国,方智,王海晨,廖晓波,徐朝军. 快通道拔管在全动脉冠脉旁路移植术的多中心临床效果[J]. 山东大学学报 (医学版), 2025, 63(5): 26-32. |
| [3] | 王智琪,戚继荣,扈元利,陈绪军,王庆峰,莫绪明. 全动脉冠状动脉旁路移植术治疗儿童川崎病后冠状动脉瘤1例并文献复习[J]. 山东大学学报 (医学版), 2025, 63(5): 47-53. |
| [4] | 温学龙,刘安慧,陈经纬,吴梦婷,杨岷. 急性非ST抬高型心肌梗死行冠状动脉旁路移植手术时机Meta分析[J]. 山东大学学报 (医学版), 2025, 63(5): 60-70. |
| [5] | 莫绪明,王庆峰. 冠状动脉旁路移植术在儿童心血管疾病中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 40-46. |
| [6] | 陈绪军,申林,陈军,于涛,曹广庆,肖飞. 解剖完全再血管化是冠心病外科治疗的新策略[J]. 山东大学学报 (医学版), 2025, 63(5): 12-17. |
| [7] | 国科,陈绪军,郑宝石,黄克力,王晓武,陈景伟,林宇,罗俊辉,王海晨,王振东,廖成全,李有金,陈文生. 解剖完全再血管化全动脉冠脉旁路移植术多中心应用中期结果[J]. 山东大学学报 (医学版), 2025, 63(5): 18-25. |
| [8] | 卢圣勋,邢亚闯,罗俊辉,刘杰,何厚乐,王志强,张娜. 糖尿病患者冠脉旁路移植手术中动脉桥的研究现状[J]. 山东大学学报 (医学版), 2025, 63(5): 33-39. |
| [9] | 杜艾家,张曼,陈鹤,王丽新,尚应殊. 微小RNA-1270靶向调控血管生成素样蛋白7抑制巨噬细胞炎症和脂质蓄积[J]. 山东大学学报 (医学版), 2025, 63(2): 1-9. |
| [10] | 张熙伟,任琳玮,张辉,张歆杰,刘伟国,王东. 左胸廓内动脉联合桡动脉行冠状动脉旁路移植术早期临床疗效[J]. 山东大学学报 (医学版), 2024, 62(3): 39-46. |
| [11] | 闫丛丛,陈辰,谢倩,王亚楠,张鑫璐,张迎春,武斌. 双酚A暴露对KGN细胞m6A修饰水平的影响[J]. 山东大学学报 (医学版), 2023, 61(8): 17-23. |
| [12] | 于瑞明,邴卫东,刘春晓,孟祥斌,毕研文. 刮取法改良人原代大隐静脉内皮细胞的提取方法[J]. 山东大学学报 (医学版), 2023, 61(2): 43-48. |
| [13] | 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9. |
| [14] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
| [15] | 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39. |
|
||