山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (5): 33-39.doi: 10.6040/j.issn.1671-7554.0.2024.0889
• 重点专题——动脉桥在冠脉旁路移植中的应用 • 上一篇
卢圣勋,邢亚闯,罗俊辉,刘杰,何厚乐,王志强,张娜
LU Shengxun, XING Yachuang, LUO Junhui, LIU Jie, HE Houle, WANG Zhiqiang, ZHANG Na
摘要: 冠状动脉旁路移植术(coronary artery bypass grafting, CABG)是治疗合并糖尿病(diabetes mellitus, DM)的严重三支冠脉病变的首选方法。动脉桥由于其远期通畅率远高于静脉桥,在CABG手术中的应用越来越多,在DM患者中的使用也日益引起关注。DM对冠脉血管的影响、对拟使用的桥动脉血管质量的影响、DM患者CABG术中多支动脉桥的应用策略和方法、不同动脉桥在DM患者中的通畅率及远期疗效等是目前研究的热点。本文就动脉桥在DM患者CABG手术中的应用及研究现状进行综述,为临床合理选择血管移植物、优化手术方案、改善DM患者CABG术后长期预后提供科学依据与参考。
中图分类号:
| [1] 国家老年医学中心, 中华医学会老年医学分会, 中国老年保健协会糖尿病专业委员会, 等. 中国老年糖尿病诊疗指南(2024版)[J]. 协和医学杂志, 2024, 15(4): 771-800. National Center of Gerontology, Chinese Society of Geriatrics, Diabetes Professional Committee of Chinese Aging Well Association, et al. Guidelines for diagnosis and treatment of senile diabetes in China(2024 edition)[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 771-800. [2] 张健, 袁戈恒. 糖尿病卒中:被忽视的大血管并发症[J]. 中华糖尿病杂志, 2020, 12(11): 864-869. ZHANG Jian, YUAN Geheng. Diabetic stroke: a neglected macrovascular complication[J]. Chinese Journal of Diabetes Mellitus, 2020, 12(11): 864-869. [3] Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. the task force on myocardial revascularization of the European society of cardiology(ESC)and European association for cardio-thoracic surgery(EACTS)[J]. G Ital Cardiol(Rome), 2019, 20: 1S-61S. doi:10.1714/3203.31801 [4] Campbell PT, Newton CC, Patel AV, et al. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults[J]. Diabetes Care, 2012, 35(9): 1835-1844. [5] Ferrannini G, Manca ML, Magnoni M, et al. Coronary artery disease and type 2 diabetes: a proteomic study[J]. Diabetes Care, 2020, 43(4):843-851. [6] Karagiannidis E, Moysidis DV, Papazoglou AS, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease[J]. Cardiovasc Diabetol, 2022, 21(1): 70. doi:10.1186/s12933-022-01494-9 [7] Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol, 2017, 37(2): 191-204. [8] Carson AP, Steffes MW, Carr JJ, et al. Hemoglobin A1c and the progression of coronary artery calcification among adults without diabetes[J]. Diabetes Care, 2015, 38(1): 66-71. [9] Zou L, Chen XJ, Chen W, et al. Comparative study on the histomorphology and molecular biology of radial artery conduits in patients with diabetes mellitus who underwent coronary bypass surgery[J]. Diab Vasc Dis Res, 2013, 10(3): 208-215. [10] Nakajima T, Tachibana K, Takagi N, et al. Histomorphologic superiority of internal thoracic arteries over right gastroepiploic arteries for coronary bypass[J]. J Thorac Cardiovasc Surg, 2016, 151(6): 1704-1708. [11] Lapenna D, Ciofani G, Calafiore AM, et al. Impaired glutathione-related antioxidant defenses in the arterial tissue of diabetic patients[J]. Free Radic Biol Med, 2018, 124: 525-531. doi:10.1016/j.freeradbiomed.2018.06.033 [12] Pasierski M, Staromyński J, Finke J, et al. Clinical insights to complete and incomplete surgical revascularization in atrial fibrillation and multivessel coronary disease[J]. Front Cardiovasc Med, 2022, 9: 910811. doi:10.3389/fcvm.2022.910811 [13] Misfeld M, Sandner S, Caliskan E, et al. Outcomes after surgical revascularization in diabetic patients[J]. Interdiscip Cardiovasc Thorac Surg, 2024, 38(2): ivae014. doi:10.1093/icvts/ivae014 [14] Zimarino M, Ricci F, Romanello M, et al. Complete myocardial revascularization confers a larger clinical benefit when performed with state-of-the-art techniques in high-risk patients with multivessel coronary artery disease: a meta-analysis of randomized and observational studies[J]. Catheter Cardiovasc Interv, 2016, 87(1): 3-12. [15] Puskas JD, Sadiq A, Vassiliades TA, et al. Bilateral internal thoracic artery grafting is associated with significantly improved long-term survival, even among diabetic patients[J]. Ann Thorac Surg, 2012, 94(3): 710-715. [16] Taggart DP, Audisio K, Gerry S, et al. Single versus multiple arterial grafting in diabetic patients at 10 years: the arterial revascularization trial[J]. Eur Heart J, 2022, 43(44): 4644-4652. [17] Thuijs DJFM, Davierwala P, Milojevic M, et al. Long-term survival after coronary bypass surgery with multiple versus single arterial grafts[J]. Eur J Cardiothorac Surg, 2022, 61(4): 925-933. [18] Yamaguchi A, Kimura N, Itoh S, et al. Efficacy of multiple arterial coronary bypass grafting in patients with diabetes mellitus[J]. Eur J Cardiothorac Surg, 2016, 50(3): 520-527. [19] Schwann TA, El Hage Sleiman AKM, Yammine MB, et al. Incremental value of increasing number of arterial grafts: the effect of diabetes mellitus[J]. Ann Thorac Surg, 2018, 105(6): 1737-1744. [20] Raza S, Blackstone EH, Houghtaling PL, et al. Influence of diabetes on long-term coronary artery bypass graft patency[J]. J Am Coll Cardiol, 2017, 70(5): 515-524. [21] Gaudino M, Yong CM, Chadow D, et al. Coronary artery bypass surgery after transradial catheterization: implementing 2021 ACC/AHA/SCAI revascularization guidelines into clinical practice[J]. JACC Case Rep, 2022, 4(1): 27-30. [22] Benedetto U, Gaudino M, Caputo M, et al. Right internal thoracic artery versus radial artery as the second best arterial conduit: insights from a meta-analysis of propensity-matched data on long-term survival[J]. J Thorac Cardiovasc Surg, 2016, 152(4): 1083-1091. [23] Magouliotis DE, Fergadi MP, Zotos PA, et al. Differences in long-term survival outcomes after coronary artery bypass grafting using single vs multiple arterial grafts: a meta-analysis with reconstructed time-to-event data and subgroup analyses[J]. Gen Thorac Cardiovasc Surg, 2023, 71(2): 77-89. [24] Navia D, Vrancic M, Piccinini F, et al. Is the second internal thoracic artery better than the radial artery in total arterial off-pump coronary artery bypass grafting? A propensity score-matched follow-up study[J]. J Thorac Cardiovasc Surg, 2014, 147(2): 632-638. [25] Gaudino M, Lorusso R, Rahouma M, et al. Radial artery versus right internal thoracic artery versus saphenous vein as the second conduit for coronary artery bypass surgery: a network meta-analysis of clinical outcomes[J]. J Am Heart Assoc, 2019, 8(2): e010839. doi:10.1161/JAHA.118.010839 [26] Tranbaugh RF, Dimitrova KR, Lucido DJ, et al. The second best arterial graft: a propensity analysis of the radial artery versus the free right internal thoracic artery to bypass the circumflex coronary artery[J]. J Thorac Cardiovasc Surg, 2014, 147(1): 133-140. [27] Tatoulis J. The radial artery in coronary surgery, 2018[J]. Indian J Thorac Cardiovasc Surg, 2018, 34(Suppl 3): 234-244. [28] Cartier R, Leacche M, Couture P. Changing pattern in beating heart operations: use of skeletonized internal thoracic artery[J]. Ann Thorac Surg, 2002, 74(5): 1548-1552. [29] Calafiore AM, Vitolla G, Iaco AL, et al. Bilateral internal mammary artery grafting: midterm results of pedicled versus skeletonized conduits[J]. Ann Thorac Surg, 1999, 67(6): 1637-1642. [30] Galbut DL, Kurlansky PA, Traad EA, et al. Bilateral internal thoracic artery grafting improves long-term survival in patients with reduced ejection fraction: a propensity-matched study with 30-year follow-up[J]. J Thorac Cardiovasc Surg, 2012, 143(4): 844-853. [31] Benedetto U, Altman DG, Gerry S, et al. Pedicled and skeletonized single and bilateral internal thoracic artery grafts and the incidence of sternal wound complications: insights from the Arterial Revascularization Trial[J]. J Thorac Cardiovasc Surg, 2016, 152(1): 270-276. [32] Deja MA, Wo s S, Goba KS, et al. Intraoperative and laboratory evaluation of skeletonized versus pedicled internal thoracic artery[J]. Ann Thorac Surg, 1999, 68(6): 2164-2168. [33] Pevni D, Mohr R, Lev-Run O, et al. Influence of bila-teral skeletonized harvesting on occurrence of deep sternal wound infection in 1, 000 consecutive patients undergoing bilateral internal thoracic artery grafting[J]. Ann Surg, 2003, 237(2): 277-280. [34] Matsa M, Paz Y, Gurevitch J, et al. Bilateral skeleto-nized internal thoracic artery grafts in patients with diabetes mellitus[J]. J Thorac Cardiovasc Surg, 2001, 121(4): 668-674. [35] Suma H, Tanabe H, Yamada J, et al. Midterm results for use of the skeletonized gastroepiploic artery graft in coronary artery bypass[J]. Circ J, 2007, 71(10): 1503-1505. [36] Suzuki T, Asai T, Kinoshita T. Total arterial off-pump coronary artery bypass grafting was not associated with inferior outcomes for diabetic when compared with non-diabetic patients[J]. Interact Cardiovasc Thorac Surg, 2015, 21(6): 705-711. [37] Shroyer ALW, Quin JA, Wagner TH, et al. Off-pump versus on-pump impact: diabetic patient 5-year coronary artery bypass clinical outcomes[J]. Ann Thorac Surg, 2019, 107(1): 92-98. [38] Xu F, Li L, Zhou CH, et al. On-pump or off-pump impact of diabetic patient undergoing coronary artery bypass grafting 5-year clinical outcomes[J]. Rev Cardiovasc Med, 2024, 25(9): 349. doi:10.31083/j.rcm2509349 [39] Wang YS, Shi XL, Du RS, et al. Off-pump versus on-pump coronary artery bypass grafting in patients with diabetes: a meta-analysis[J]. Acta Diabetol, 2017, 54(3): 283-292. [40] Lamy AR, Devereaux PJ, Yusuf S. Five-year outcomes after off-pump or on-pump coronary-artery bypass grafting[J]. N Engl J Med, 2017, 376(9): 894-895. [41] Shroyer AL, Hattler B, Wagner TH, et al. Five-year outcomes after on-pump and off-pump coronary-artery bypass[J]. N Engl J Med, 2017, 377(7): 623-632. [42] Ren QS, Li G, Chu TX, et al. Off-pump versus on-pump coronary artery bypass grafting in diabetic patients: a meta-analysis of observational studies with a propensity-score analysis[J]. Cardiovasc Drugs Ther, 2024. doi:10.1007/s10557-024-07603-y [43] 许志锋, 凌云鹏, 崔仲奇, 等. 经左胸前外侧微创冠脉搭桥治疗冠心病多支病变[J]. 北京大学学报(医学版), 2020, 52(5): 863-869. XU Zhifeng, LING Yunpeng, CUI Zhongqi, et al. Feasibility and safety of minimally invasive cardiac coronary artery bypass grafting surgery for patients with multivessel coronary artery disease: early outcome and short-mid-term follow up results[J]. Journal of Peking University(Health Sciences), 2020, 52(5): 863-869. [44] Zhang LF, Fu YH, Gong YC, et al. Graft patency and completeness of revascularization in minimally invasive multivessel coronary artery bypass surgery[J]. J Card Surg, 2021, 36(3): 992-997. [45] Zhao GX, Chi LQ, Liang L, et al. The efficacy of minimally invasive coronary artery bypass grafting(mics cabg)for patients with coronary artery diseases and diabetes: a single center retrospective study[J]. J Cardiothorac Surg, 2024, 19(1): 244. doi:10.1186/s13019-024-02717-8 [46] Guo MH, Toubar O, Issa H, et al. Long-term survival, cardiovascular, and functional outcomes after minimally invasive coronary artery bypass grafting in 566 patients[J]. J Thorac Cardiovasc Surg, 2024, 168(4): 1080-1088. [47] Nambiar P, Kumar S, Mittal CM, et al. Outcomes of bilateral internal thoracic arteries in minimally invasive coronary artery bypass grafting with analogy to the SYNTAX trial[J]. Innovations, 2019, 14(3): 227-235. [48] Nisivaco S, Bhasin R, Kitahara H, et al. Bilateral internal thoracic artery grafting in robotic beating-heart totally endoscopic coronary artery bypass: 10-year outcomes[J]. Ann Cardiothorac Surg, 2024, 13(4): 354-363. [49] Tiwari KK, Wadhawa V, Jawarkar M, et al. Total arterial multivessels minimal invasive direct coronary artery bypass grafting via left minithoracotomy[J]. Gen Thorac Cardiovasc Surg, 2021, 69(1): 8-13. [50] Flather M, Dimagli A, Benedetto U, et al. Bilateral versus single internal thoracic coronary artery bypass grafting: the ART RCT[J]. Efficacy and Mechanism Evaluation, 2023. doi:10.3310/JYGF5402 [51] Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes[J]. N Engl J Med, 2012, 367(25): 2375-2384. [52] Tranbaugh RF, Dimitrova KR, Friedmann P, et al. Coronary artery bypass grafting using the radial artery: clinical outcomes, patency, and need for reintervention[J]. Circulation, 2012, 126(Suppl 1): 170-175. [53] di Bacco L, Repossini A, Muneretto C, et al. Long-term outcome of total arterial myocardial revascularization versus conventional coronary artery bypass in diabetic and non-diabetic patients: a propensity-match analysis[J]. Cardiovasc Revasc Med, 2020, 21(5): 580-587. [54] Gharibeh L, Ferrari G, Ouimet M, et al. Conduits biology regulates the outcomes of coronary artery bypass grafting[J]. JACC Basic Transl Sci, 2021, 6(4): 388-396. [55] Hamilton GW, Theuerle J, Chye D, et al. Graft patency and clinical outcomes in patients with radial artery grafts previously instrumented for cardiac catheterization[J]. Circ Cardiovasc Interv, 2024, 17(7): e013739. doi:10.1161/CIRCINTERVENTIONS.123.013739 [56] Buxton BF, Shi WY, Tatoulis J, et al. Total arterial revascularization with internal thoracic and radial artery grafts in triple-vessel coronary artery disease is associated with improved survival[J]. J Thorac Cardiovasc Surg, 2014, 148(4): 1238-1243. [57] Ruttmann E, Fischler N, Sakic A, et al. Second internal thoracic artery versus radial artery in coronary artery bypass grafting: a long-term, propensity score-matched follow-up study[J]. Circulation, 2011, 124(12): 1321-1329. [58] Tsuneyoshi H, Komiya T, Shimamoto T, et al. The second best arterial graft to the left coronary system in off-pump bypass surgery: a propensity analysis of the radial artery with a proximal anastomosis to the ascending aorta versus the right internal thoracic artery[J]. Gen Thorac Cardiovasc Surg, 2015, 63(6): 335-342. [59] Qureshi SH, Boulemden A, Darwin O, et al. Multiarterial coronary grafting using the radial artery as a second arterial graft: how far does the survival benefit extend?[J]. Eur J Cardiothorac Surg, 2021, 61(1): 216-224. [60] Gaudino M, Alexander JH, Bakaeen FG, et al. Randomized comparison of the clinical outcome of single versus multiple arterial grafts: the ROMA trial-rationale and study protocol[J]. Eur J Cardiothorac Surg, 2017, 52(6): 1031-1040. |
| [1] | 陈绪军,何国伟. 着力进一步推进动脉桥在我国冠心病冠脉旁路移植术中的应用[J]. 山东大学学报 (医学版), 2025, 63(5): 1-5. |
| [2] | 肖飞,王联群,季强. STS多支动脉冠脉旁路移植应用解读[J]. 山东大学学报 (医学版), 2025, 63(5): 6-11. |
| [3] | 陈绪军,申林,陈军,于涛,曹广庆,肖飞. 解剖完全再血管化是冠心病外科治疗的新策略[J]. 山东大学学报 (医学版), 2025, 63(5): 12-17. |
| [4] | 国科,陈绪军,郑宝石,黄克力,王晓武,陈景伟,林宇,罗俊辉,王海晨,王振东,廖成全,李有金,陈文生. 解剖完全再血管化全动脉冠脉旁路移植术多中心应用中期结果[J]. 山东大学学报 (医学版), 2025, 63(5): 18-25. |
| [5] | 国科,陈绪军,郑宝石,施超,黄克力,曹勇,陈军,吴东凯,张晓慎,罗俊辉,申林,莫绪明,杨岷,王晓武,雷印胜,田茂州,王振东,孟自力,孙忠东,李有金,陆辉辉,孟春营,高峰,陈黔苏,郭能瑞,柳德斌,张楠,林宇,陈文生,宋保国,方智,王海晨,廖晓波,徐朝军. 快通道拔管在全动脉冠脉旁路移植术的多中心临床效果[J]. 山东大学学报 (医学版), 2025, 63(5): 26-32. |
| [6] | 杜学识,倪向敏,梁馨予,白倩,朱文艺,王建. 雌马酚对DN的保护作用及潜在靶点[J]. 山东大学学报 (医学版), 2024, 62(8): 49-58. |
| [7] | 许沛晨,李晓博,庄向华,娄能俊,吕丽,周玲雁,牟亚朋,宋玉文,陈诗鸿. 儿童Alstrom综合征2例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(3): 107-111. |
| [8] | 张熙伟,任琳玮,张辉,张歆杰,刘伟国,王东. 左胸廓内动脉联合桡动脉行冠状动脉旁路移植术早期临床疗效[J]. 山东大学学报 (医学版), 2024, 62(3): 39-46. |
| [9] | 林晓倩,封茂燕,牟正. 二肽基肽酶-4抑制剂的药学特点及临床应用[J]. 山东大学学报 (医学版), 2024, 62(12): 43-48. |
| [10] | 于丹凤,曹娟,于世佳,杜鲁涛,侯新国. 电化学发光法与液相色谱-串联质谱法评估糖尿病患者维生素D缺乏程度的效能比较与界值确定[J]. 山东大学学报 (医学版), 2023, 61(7): 90-95. |
| [11] | 李金泉,高美芳,闫飞,董明. 136例2型糖尿病患者肌肉痉挛的发生频率及危险因素[J]. 山东大学学报 (医学版), 2023, 61(5): 20-24. |
| [12] | 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107. |
| [13] | 黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿. 高糖环境下Lipin1对神经元代谢组学的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 1-8. |
| [14] | 包瑾瑾,刘庆燕,孙甜甜,陈青,刘佳. 糖尿病相关抗体阳性合并MODY14相关APPL1基因突变1例[J]. 山东大学学报 (医学版), 2023, 61(12): 113-118. |
| [15] | 韩梅,孟维静,陶子琨,杨希,徐雅琪,穆华夏,卜伟晓,王素珍,石福艳. 基于G-计算的高血压、抑郁在2型糖尿病与认知功能之间的因果多中介分析[J]. 山东大学学报 (医学版), 2023, 61(10): 101-108. |
|
||