山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (9): 61-65.doi: 10.6040/j.issn.1671-7554.0.2024.0321
• 主动脉疾病基础与临床研究进展专刊—研究进展 • 上一篇
梁博文,陆清声
LIANG Bowen, LU Qingsheng
摘要: 血管介入手术机器人在主动脉腔内修复术等领域具有显著优势,能提高操作精准性和操作效率。随着人工智能技术的发展,机器人辅助主动脉腔内修复术正朝着全流程自动化、高效率、高安全性方向发展。未来,通过构建手术评估、手术规划和手术导航三位一体的手术辅助模式架构,有望实现血管疾病治疗的精准化、智能化和微创化。
中图分类号:
[1] Lederle FA, Kyriakides TC, Stroupe KT, et al. Open versus endovascular repair of abdominal aortic aneurysm[J]. N Engl J Med, 2019, 380(22): 2126-2135. [2] Chiu P, Goldstone AB, Schaffer JM, et al. Endovascular versus open repair of intact descending thoracic aortic aneurysms[J]. J Am Coll Cardiol, 2019, 73(6): 643-651. [3] 陆清声. 血管疾病诊治的精准智能微创时代 [J]. 中华医学杂志, 2022, 102(37): 2914-2917. LU Qingsheng. Diagnosis and treatment of vascular diseases in the era of precise, intelligent and minimally invasive surgery[J]. National Medical Journal of China, 2022, 102(37): 2914-2917. [4] Ernst S, Ouyang FF, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation[J]. Circulation, 2004, 109(12): 1472-1475. [5] Beyar R, Gruberg L, Deleanu D, et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial[J]. J Am Coll Cardiol, 2006, 47(2): 296-300. [6] Weisz G, Metzger DC, Caputo RP, et al. Safety and feasibility of robotic percutaneous coronary intervention: precise(Percutaneous Robotically-Enhanced Coronary Intervention)Study[J]. J Am Coll Cardiol, 2013, 61(15): 1596-1600. [7] Mahmud E, Naghi J, Ang L, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study(complex robotically AssistedPercutaneous coronary intervention)[J]. JACC Cardiovasc Interv, 2017, 10(13): 1320-1327. [8] Durand E, Sabatier R, Smits PC, et al. Evaluation of the R-One robotic system for percutaneous coronary intervention: the R-EVOLUTION study[J]. EuroIntervention, 2023, 18(16): e1339-e1347. [9] Riga CV, Cheshire NJW, Hamady MS, et al. The role of robotic endovascular catheters in fenestrated stent grafting[J]. J Vasc Surg, 2010, 51(4): 810-819. [10] Cochennec F, Kobeiter H, Gohel M, et al. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures[J]. J Endovasc Ther, 2015, 22(2): 187-193. [11] Khan EM, Frumkin W, Ng GA, et al. First experience with a novel robotic remote catheter system: amigoTM mapping trial[J]. J Interv Card Electrophysiol, 2013, 37(2): 121-129. [12] Song C, Xia SB, Zhang H, et al. Novel endovascular interventional surgical robotic system based on biomimetic manipulation[J]. Micromachines, 2022, 13(10): 1587. [13] Kladko DV, Vinogradov VV. Magnetosurgery: principles, design, and applications[J]. Smart Mater Med, 2024, 5(1): 24-35. [14] Vidal V, Bargellini I, Bent C, et al. Performance evaluation of a miniature and disposable endovascular robotic device[J]. Cardiovasc Intervent Radiol, 2024, 47(4): 503-507. [15] Riga DV, Bicknell CD, Cheshire N, et al. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair[J]. J Endovasc Ther, 2009, 16(2): 149-153. [16] Riga CV, Bicknell CD, Rolls A, et al. Robot-assisted fenestrated endovascular aneurysm repair(FEVAR)using the Magellan system[J]. J Vasc Interv Radiol, 2013, 24(2): 191-196. [17] Perera AH, Riga CV, Monzon L, et al. Robotic arch catheter placement reduces cerebral embolization during thoracic endovascular aortic repair(TEVAR)[J]. Eur J Vasc Endovasc Surg, 2017, 53(3): 362-369. [18] Cheung S, Rahman R, Bicknell CD, et al. Comparison of manual versus robot-assisted contralateral gate cannulation in patients undergoing endovascular aneurysm repair[J]. Int J Comput Assist Radiol Surg, 2020, 15(12): 2071-2078. [19] Song C, Xia SB, Zhang L, et al. A novel endovascular robotic-assisted system for endovascular aortic repair: first-in-human evaluation of practicability and safety[J]. Eur Radiol, 2023, 33(11): 7408-7418. [20] Wang KD, Liu JY, Yan WW, et al. Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments[J]. Int J Comput Assist Radiol Surg, 2021, 16(1): 179-192. [21] Wang KD, Mai XM, Xu HJ, et al. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system[J]. Int J Med Robot, 2020, 16(5): 1-10. [22] Lu QS, Shen Y, Xia SB, et al. A novel universal endovascular robot for peripheral arterial stent-assisted angioplasty: initial experimental results[J]. Vasc Endovascular Surg, 2020, 54(7): 598-604. [23] Wang KD, Chen B, Lu QS, et al. Design and performance evaluation of real-time endovascular interventional surgical robotic system with high accuracy[J]. Int J Med Robot, 2018, 14(5): e1915. [24] 梁博文, 陆清声. 血管腔内修复术中导航技术的研究进展和展望 [J]. 中国血管外科杂志:电子版, 2023, 15(1): 75-79. LIANG Bowen, LU Qingsheng. Research progress and prospect of navigation technology in endovascular repair[J]. Chinese Journal of Vascular Surgery(Electronic Version), 2023, 15(1): 75-79. [25] Chen DD, Wei JY, Deng YM, et al. Virtual stenting with simplex mesh and mechanical contact analysis for real-time planning of thoracic endovascular aortic repair[J]. Theranostics, 2018, 8(20): 5758-5771. [26] Muluk SC, Elrakhawy M, Chess B, et al. Successful endovascular treatment of severe chronic mesenteric ischemia facilitated by intraoperative positioning system image guidance[J]. J Vasc Surg Cases Innov Tech, 2022, 8(1): 60-65. [27] van Herwaarden JA, Jansen MM, Vonken EPA, et al. First in human clinical feasibility study of endovascular navigation with fiber optic RealShape(FORS)technology[J]. Eur J Vasc Endovasc Surg, 2021, 61(2): 317-325. [28] Maurel B, Martin-Gonzalez T, Chong D, et al. A prospective observational trial of fusion imaging in infrarenal aneurysms[J]. J Vasc Surg, 2018, 68(6): 1706-1713. [29] De Beaufort LM, Nasr B, Corvec TL, et al. Automated image fusion guidance during endovascular aorto-iliac procedures: a randomized controlled pilot study[J]. Ann Vasc Surg, 2021, 75: 86-93. doi:10.1016/j.avsg.2021.03.023. [30] Pore A, Li Z, DallAlba D, et al. Autonomous navigation for robot-assisted intraluminal and endovascular procedures: a systematic review[J]. IEEE Trans Robot, 2023, 39(4): 2529-2548. |
[1] | 林长泼,符伟国. Stanford B型主动脉夹层的诊疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 7-12. |
[2] | 卫任,郭伟. 腹主动脉瘤腔内治疗现状[J]. 山东大学学报 (医学版), 2024, 62(9): 13-18. |
[3] | 王伦常,覃淇,舒畅. 创伤性B型主动脉夹层的诊疗进展[J]. 山东大学学报 (医学版), 2024, 62(9): 19-25. |
[4] | 杨建平,管圣,方青波,慈红波,戈小虎. 钝性胸主动脉损伤的诊治进展[J]. 山东大学学报 (医学版), 2024, 62(9): 36-41. |
[5] | 张景慧,王娟,赵玉洁,段淼,刘毅然,林敏娟,谯旭,李真,左秀丽. 基于机器学习的胃肠道疾病舌诊模型构建[J]. 山东大学学报 (医学版), 2024, 62(1): 38-47. |
[6] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[7] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[8] | 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133. |
[9] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[10] | 聂佩,王锡明. 人工智能在心肌影像应用中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 1-6. |
[11] | 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20. |
[12] | 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20. |
[13] | 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35. |
[14] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[15] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
|