您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 10-20.doi: 10.6040/j.issn.1671-7554.0.2024.0004

• 呼吸系统疾病精准诊疗专题 • 上一篇    下一篇

基于SII构建及评价预测ARDS住院死亡率的在线临床风险模型

孙丽娜,白红艳,牛宗格,张福帅,曲仪庆   

  1. 山东大学齐鲁医院呼吸与危重症医学科, 山东 济南 250012
  • 发布日期:2024-09-20
  • 通讯作者: 曲仪庆. E-mail:quyiqing@sdu.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(72293582);山东大学临床医学研究中心ECCM项目(2021SDUCRCB001)

Construction and evaluation of an online clinical risk model for predicting in-hospital mortality in patients with ARDS based on SII

SUN Lina, BAI Hongyan, NIU Zongge, ZHANG Fushuai, QU Yiqing   

  1. Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2024-09-20

摘要: 目的 基于全身免疫炎症指数(systemic immune inflammation index, SII)探讨影响急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)患者住院死亡率的危险因素,并建立预后预测模型。 方法 选取山东大学齐鲁医院2022年12月至2023年9月符合ARDS诊断标准的219例患者的资料,按3∶1的比例随机分为训练组(165例)和验证组(54例)。采用受试者工作特征(receiver operating characteristic, ROC)曲线探究SII对ARDS患者住院死亡率的预测价值,利用多因素Logistic回归分析得出的独立危险因素绘制预测ARDS患者住院死亡率的列线图,通过ROC曲线下面积(area under curve, AUC)、校准曲线、决策曲线分析(decision curve analysis, DCA)评估列线图的预测效能。 结果 相对于血小板与淋巴细胞的比值(platelet-to-lymphocyte ratio, PLR)、单核细胞与淋巴细胞的比值(monocyte-to-lymphocyte ratio, MLR)、C反应蛋白与白蛋白的比值(C-reactive protein-to-albumin ratio, CAR)、乳酸脱氢酶与白蛋白的比值(lactate dehydrogenase-to-albumin ratio, LAR)等其他新型炎症指标,SII曲线下面积最大(AUC=0.79),最佳截断值为3 096.60×109/L,其灵敏度和特异度分别为73.70%和76.40%;多因素Logistic回归分析发现,SII、年龄、C反应蛋白(C-reactive protein, CRP)、慢性肝脏疾病和慢性肾脏疾病是影响ARDS患者住院死亡率的独立危险因素(P均<0.05)。列线图模型在训练组和验证组的AUC分别为0.876、0.848,校准曲线、DCA证实,该模型临床预测效果良好。 结论 入院时高SII水平与ARDS患者住院死亡风险增加相关,基于SII构建在线列线图可早期预测ARDS患者的住院死亡率,具有较高的区分度、准确性及临床实用性。

关键词: 急性呼吸窘迫综合征, 全身免疫炎症指数, 列线图, 住院死亡率, 预测模型

Abstract: Objective To explore the risk factors of in-hospital mortality in patients with acute respiratory distress syndrome(ARDS)based on systemic immune inflammation index(SII), and to develop a prognostic prediction model. Methods The data of 219 patients who met the diagnostic criteria of ARDS in Qilu Hospital of Shandong University from December 2022 to September 2023 were collected and randomly divided into a training group(n=165)and a verification group(n=54)in a ratio of 3∶1. The receiver operating characteristic(ROC)curve was used to explore the predictive value of SII for in-hospital mortality in patients with ARDS. A nomogram model predicting the risk of in-hospital death in patients with ARDS using independent risk factors derived from multifactorial Logistic regression analysis was constructed. The prediction efficiency of the nomogram was evaluated by ROC area under the curve(AUC), calibration curve and decision curve analysis(DCA). Results Compared with novel inflammatory indexes such as platelet-to-lymphocyte ratio(PLR), monocyte-to-lymphocyte ratio(MLR), C-reactive protein-to-albumin ratio(CAR)and lactate dehydrogenase-to-albumin ratio(LAR), the AUC of SII was the most prominent(AUC=0.79). When the optimal cutoff value was 3 096.60×109/L, the sensitivity and specificity of SII in predicting in-hospital mortality in patients with ARDS were 73.70% and 76.40%, respectively. Multivariate Logistic regression analysis showed that SII, age, CRP, chronic liver disease and chronic kidney disease were independent risk factors for in-hospital mortality in patients with ARDS(all P<0.05). The AUC of the nomogram model in the training group and the verification group were 0.876 and 0.848, respectively. The calibration curve and DCA confirmed that the model exhibited a satisfactory degree of clinical predictive efficacy. Conclusion The high levels of SII on admission are associated with increased risk of in-hospital death in patients with ARDS. The online nomogram constructed based on SII can early predict the in-hospital mortality of patients with ARDS, with high differentiation, accuracy and clinical practicability.

Key words: Acute respiratory distress syndrome, Systemic immune inflammation index, Nomogram, In-hospital mortality, Prediction model

中图分类号: 

  • R563.9
[1] Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment[J]. JAMA, 2018, 319(7): 698-710.
[2] Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
[3] Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome[J]. Lancet, 2021, 398(10300): 622-637.
[4] Mokra D, Kosutova P. Biomarkers in acute lung injury[J]. Respir Physiol Neurobiol, 2015, 209: 52-58. doi:10.1016/j.resp.2014.10.006.
[5] Terpstra ML, Aman J, van Nieuw Amerongen GP, et al. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care Med, 2014, 42(3): 691-700.
[6] Sipahioglu H, Onuk S. Lactate dehydrogenase/albumin ratio as a prognostic factor in severe acute respiratory distress syndrome cases associated with COVID-19[J]. Medicine(Baltimore), 2022, 101(38): e30759. doi:10.1097/md.0000000000030759.
[7] Yang LJ, Gao C, Li FY, et al. Monocyte-to-lymphocyte ratio is associated with 28-day mortality in patients with acute respiratory distress syndrome: a retrospective study[J]. J Intensive Care, 2021, 9(1): 49. doi:10.1186/s40560-021-00564-6.
[8] 吴薇, 肖影, 王健, 等. CRP/Alb、NLR、PLR联合检测对重症急性胰腺炎合并ARDS的预测价值[J]. 疑难病杂志, 2023, 22(9): 951-955. WU Wei, XIAO Ying, WANG Jian, et al. The predictive value of combined detection of CRP/Alb, NLR, and PLR in severe acute pancreatitis with ARDS[J]. Chinese Journal of Difficult and Complicated Cases, 2023, 22(9): 951-955.
[9] Yu XS, Chen ZQ, Hu YF, et al. Red blood cell distribution width is associated with mortality risk in patients with acute respiratory distress syndrome based on the Berlin definition: a propensity score matched cohort study[J]. Heart Lung, 2020, 49(5): 641-645.
[10] Chen JH, Zhai ET, Yuan YJ, et al. Systemic immune-inflammation index for predicting prognosis of colorectal cancer[J]. World J Gastroenterol, 2017, 23(34): 6261-6272.
[11] Jomrich G, Paireder M, Kristo I, et al. High systemic immune-inflammation index is an adverse prognostic factor for patients with gastroesophageal adenocarcinoma[J]. Ann Surg, 2021, 273(3): 532-541.
[12] Orhan AL, ?瘙塁aylık F, Çiçek V, et al. Evaluating the systemic immune-inflammation index for in-hospital and long-term mortality in elderly non-ST-elevation myocardial infarction patients[J]. Aging Clin Exp Res, 2022, 34(7): 1687-1695.
[13] Ozer Balin S, Ozcan EC, Ugur K. A new inflammatory marker of clinical and diagnostic importance in diabetic foot infection: systemic immune-inflammation index[J]. Int J Low Extrem Wounds, 2022: 15347346221130817. doi:10.1177/15347346221130817.
[14] Zhang D, Wang T, Dong X, et al. Systemic immune-inflammation index for predicting the prognosis of critically ill patients with acute pancreatitis[J]. Int J Gen Med, 2021, 14: 4491-4498. doi:10.2147/ijgm.s314393.
[15] Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47.
[16] Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment[J]. Annu Rev Pathol, 2011, 6: 147-163. doi:10.1146/annurev-pathol-011110-130158.
[17] Chen W, Janz DR, Bastarache JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis[J]. Crit Care Med, 2015, 43(4): 801-807.
[18] Livingstone SA, Wildi KS, Dalton HJ, et al. Coagulation dysfunction in acute respiratory distress syndrome and its potential impact in inflammatory subphenotypes[J]. Front Med(Lausanne), 2021, 8: 723217. doi:10.3389/fmed.2021.723217.
[19] 李若寒, 李佳媚, 任佳佳, 等. 急性呼吸窘迫综合征中炎症和凝血的交互作用[J]. 中国急救医学, 2023, 43(9): 752-756. LI Ruohan, LI Jiamei, REN Jiajia, et al. Cross talks between coagulation and inflammation in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine, 2023, 43(9): 752-756.
[20] Venet F, Chung CS, Huang X, et al. Lymphocytes in the development of lung inflammation: a role for regulatory CD4+ T cells in indirect pulmonary lung injury[J]. J Immunol, 2009, 183(5): 3472-3480.
[21] Hu B, Yang XR, Xu Y, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(23): 6212-6222.
[22] Tang Y, Zeng X, Feng Y, et al. Association of systemic immune-inflammation index with short-term mortality of congestive heart failure: a retrospective cohort study[J]. Front Cardiovasc Med, 2021, 8: 753133. doi:10.3389/fcvm.2021.753133.
[23] Jia L, Li C, Bi X, et al. Prognostic value of systemic immune-inflammation index among critically ill patients with acute kidney injury: a retrospective cohort study[J]. J Clin Med, 2022, 11(14): 3978. doi:10.3390/jcm11143978.
[24] Gorman EA, OKane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management[J]. Lancet, 2022, 400(10358): 1157-1170.
[25] Schultz MJ, Van Oosten PJ, HOL L. Mortality among elderly patients with COVID-19 ARDS-age still does matter[J]. Pulmonology, 2023, 29(5): 353-355.
[26] 徐婷, 张存泰. 免疫衰老和老年营养[J]. 中国临床保健杂志, 2023, 26(4): 446-451. XU Ting, ZHANG Cuntai. Immunosenescence and malnutrition in elderly people[J]. Chinese Journal of Clinical Healthcare, 2023, 26(4): 446-451.
[27] Shu W, Guo S, Yang F, et al. Association between ARDS etiology and risk of noninvasive ventilation failure[J]. Ann Am Thorac Soc, 2022, 19(2): 255-263.
[28] Killien EY, Milis B, Vavilala MS, et al. Association between age and acute respiratory distress syndrome development and mortality following trauma[J]. Journal of Trauma and Acute Care Surgery, 2019, 86(5): 844-852.
[29] Huang I, Pranata R, Lim MA, et al. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis[J]. Ther Adv Respir Dis, 2020, 14: 1753466620937175. doi:10.1177/1753466620937175.
[30] Iwamura APD, Tavares da Silva MR, Hümmelgen AL, et al. Immunity and inflammatory biomarkers in COVID-19: a systematic review[J]. Rev Med Virol, 2021, 31(4): e2199. doi:10.1002/rmv.2199.
[31] Xu GG, Yang YS, Du YZ, et al. Clinical pathway for early diagnosis of COVID-19: updates from experience to evidence-based practice[J]. Clin Rev Allergy Immunol, 2020, 59(1): 89-100.
[32] Saviano A, Wrensch F, Ghany MG, et al. Liver disease and coronavirus disease 2019: from pathogenesis to clinical care[J]. Hepatology, 2021, 74(2): 1088-1100.
[33] Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure[J]. J Hepatol, 2012, 57(6): 1336-1348.
[34] Gacouin A, Locufier M, Uhel F, et al. Liver cirrhosis is independently associated with 90-day mortality in ARDS patients[J]. Shock, 2016, 45(1): 16-21.
[35] Visconti L, Santoro D, Cernaro V, et al. Kidney-lung connections in acute and chronic diseases: current perspectives[J]. J Nephrol, 2016, 29(3): 341-348.
[1] 郭振江,王宁,赵光远,杜立强,崔朝勃,刘防震. 基于机器学习建立术前预测近端胃癌食管切缘阳性模型[J]. 山东大学学报 (医学版), 2024, 62(7): 78-83.
[2] 田丽君,桑玉洁,孙瑜婧,韩冰,秦成勇,祁建妮. 全身免疫炎症指数对原发性肝癌患者免疫检查点抑制剂治疗相关不良反应的预测价值[J]. 山东大学学报 (医学版), 2024, 62(6): 48-53.
[3] 刁玉洁,林琳,李文瑄,王洲洋,江蓓,胡迎迎,刘广义. NPR预测ANCA相关血管炎不良肾脏预后及其协同多因素优化模型[J]. 山东大学学报 (医学版), 2024, 62(2): 60-68.
[4] 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67.
[5] 钟璐,薛付忠. 基于贝叶斯网络不确定性推理的肺癌风险预测模型[J]. 山东大学学报 (医学版), 2023, 61(4): 86-94.
[6] 王建华,孙淑青,张效东,杨筱筱,王友健,卢金宝,李赞武. ICU机械通气患者撤机风险预测模型的构建[J]. 山东大学学报 (医学版), 2023, 61(12): 86-93.
[7] 张明慧,王丽云,王芸,张新月,沙凯辉. 髋部骨折患者术后恐动症风险的列线图分析[J]. 山东大学学报 (医学版), 2023, 61(11): 74-81.
[8] 赵启迪,王凯,赵小刚,闫涛,王亚东,杜贾军. 基于SEER数据库构建并验证IIIB期非小细胞肺癌患者预后模型[J]. 山东大学学报 (医学版), 2023, 61(10): 23-37.
[9] 巨艳丽,王丽华,成芳,黄凤艳,陈学禹,贾红英. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报 (医学版), 2023, 61(1): 94-99.
[10] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[11] 杨粒芝,孙霄,商蒙蒙,郭鲁,时丹丹,李杰. 基于中国版甲状腺影像报告与数据系统的甲状腺结节恶性风险预测模型[J]. 山东大学学报 (医学版), 2022, 60(6): 64-69.
[12] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
[13] 赵洁,李岩,李明,于德新. 螺旋CT对黏液性软组织肿瘤良恶性鉴别的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 100-107.
[14] 谢同辉,陈志强,常建华,赵丹文,徐博文,智绪亭. 肝内胆管癌根治性切除术后生存因素分析及列线图的建立[J]. 山东大学学报 (医学版), 2021, 59(4): 93-99.
[15] 李潘,李月月,李延青. 个体化肠道准备对肠道准备质量的影响[J]. 山东大学学报 (医学版), 2020, 58(3): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 高庆贞,吕家驹,张辉,尉立京,丁克家. 阻断MAPK通路对前列腺癌细胞增殖的影响[J]. 山东大学学报(医学版), 2006, 44(5): 501 -503 .
[4] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[5] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .
[6] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[7] 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82 -88 .
[8] 张孝国,王敏,陈建 . 丙型肝炎病毒RNA高变区准种复杂性与干扰素疗效关系的初步探讨[J]. 山东大学学报(医学版), 2008, 46(2): 171 -173 .
[9] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[10] 路璐,孙志钢,张楠. 继发性嗜血细胞综合征1例[J]. 山东大学学报 (医学版), 2020, 1(7): 122 -124 .