您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 1-9.doi: 10.6040/j.issn.1671-7554.0.2024.0467

• 呼吸系统疾病精准诊疗专题 •    下一篇

铁死亡在支气管哮喘气道重塑中的作用

孙丛丛1*,崔文静2*,张锦涛1,张东2,刘晓菲2,潘云2,亓倩1,徐嘉蔚1,曾荣2,郭红喜1,董亮1,2   

  1. 1.山东第一医科大学第一附属医院(山东省千佛山医院)呼吸与危重症医学科, 山东省呼吸疾病研究所, 山东 济南 250014;2.山东大学 山东省千佛山医院呼吸与危重症医学科, 山东 济南 250014
  • 发布日期:2024-09-20
  • 通讯作者: 董亮. E-mail:dl5506@126.com*共同第一作者.
  • 基金资助:
    国家自然科学基金项目(82270032,82100056);山东省重点研发计划项目(2021SFGC0504);山东省自然科学基金联合基金项目(ZR2021LSW015);山东省自然科学基金项目(ZR2021QH170);济南市呼吸疾病临床医学研究中心项目(202132002)

Roles of ferroptosis in asthmatic airway remodeling

SUN Congcong1*, CUI Wenjing2*, ZHANG Jintao1, ZHANG Dong2, LIU Xiaofei2, PAN Yun2, QI Qian1, XU Jiawei1, ZENG Rong2, GUO Hongxi1, DONG Liang1,2   

  1. 1. Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University &
    Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory, Jinan 250014, Shandong, China;
    2. Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
  • Published:2024-09-20

摘要: 目的 通过建立卵清蛋白(ovalbumin, OVA)诱导的哮喘小鼠模型,研究铁死亡在支气管哮喘气道重塑发病中的作用,为治疗哮喘气道重塑提供新的靶点。 方法 将24只雌性C57BL/6小鼠随机分为4个组:对照组、哮喘模型组(OVA组)、干预组(Fer-1组)及Fer-1联合哮喘组(Fer-1+OVA组),每组6只,通过建立OVA诱导哮喘小鼠模型联合公共数据库筛选的对照组和OVA诱导的OVA组小鼠肺组织差异表达谱,探索铁死亡与哮喘的联系。应用铁离子检测试剂盒和普鲁士蓝铁染色法对小鼠肺组织中的铁表达进行测定,通过免疫印记及免疫组化评估肺组织谷胱甘肽过氧化物酶4(glutathione peroxidase 4, GPX4)蛋白的表达,检测小鼠肺组织脂质过氧化代谢物丙二醛(malondialdehyde, MDA)的表达,透射电子显微镜观察小鼠气道上皮超微结构改变,应用MASSON组织染色法对小鼠气道上皮下胶原沉积进行观察。为了进一步验证铁死亡抑制剂对哮喘气道重塑的影响,给予哮喘模型小鼠铁死亡抑制剂干预后,对气道周围胶原沉积情况及肺组织GPX4蛋白表达进行评估,并分析气道重塑指标的改变。 结果 生物信息学分析显示,哮喘小鼠肺组织中铁死亡通路较对照组明显富集,OVA组小鼠气道上皮中GPX4表达较对照组显著降低,表明铁死亡可能参与哮喘的发病过程。OVA组小鼠肺组织中铁含量增加,气道上皮GPX4表达降低,肺组织MDA表达升高,气道上皮下胶原沉积增加,伴有小鼠气道上皮特征性超微结构改变,表明铁死亡与哮喘气道重塑密切相关。铁死亡抑制剂干预哮喘小鼠后,气道上皮GPX4表达升高,气道上皮下胶原沉积减轻,气道重塑标志蛋白表达降低,上皮标志蛋白表达升高。 结论 铁死亡参与支气管哮喘气道重塑的发病过程,铁死亡抑制剂Fer-1可减轻哮喘气道重塑的结构改变,为治疗支气管哮喘气道重塑提供新靶点。

关键词: 哮喘, 气道重塑, 铁死亡, Ferrostatin-1, 治疗靶点

Abstract: Objective To explore the contribution of ferroptosis to airway remodeling in asthma by establishing a ovalbumin(OVA)-induced asthma mice model, and to provide new directions in the treatment of airway remodeling of asthma. Methods Twenty-four female C57BL/6 mice were stochastically divided into four groups: the control group(n=6), the OVA group(n=6), the ferrostatin(Fer)-1 group(n=6), and the Fer-1+OVA group(n=6). The association between ferroptosis and asthma was clarified by establishing the differentially expressed genes of lung tissues in the OVA-induced asthma mice and controls screened from public databases. The iron concentration was measured by iron detection kit and Perls stain, and the expression of glutathione peroxidase 4(GPX4)protein was evaluated by Western blotting and immunohistochemical staining. The levels of the lipid peroxidation product malondialdehyde(MDA)in lung tissue were assayed and the ultra-structural changes in the airway epithelium were observed using transmission electron microscopy(TEM). Lung tissue slices were stained with Masson staining to evaluate collagen deposition. To further verify the effect of ferroptosis inhibitor on the airway remodeling in asthma, the mice were intervened with Fer-1, and then collagen deposition was evaluated by MASSON staining, the expression of GPX4 protein was detected by immunofluorescence and Western blotting. Results The results of bioinformatics analysis showed that the ferroptosis signaling pathway was significantly enriched in OVA group, suggesting that ferroptosis played a certain role in the pathogenesis of asthma. Meanwhile, in this gene set, GPX4 was significantly decreased in OVA group. In asthma mice model, collagen deposition was accompanied by a series of ferroptosis features such as increased iron concentration, decreased GPX4 expression, MDA accumulation, increased collagen deposition, and characteristic ultra-structural changes in the airway epithelium, suggesting that ferroptosis was intimately linked with asthma airway remodeling. After treated with Fer-1, for the asthma model mice, the GPX4 expression was elevated, the collagen deposition was reducted, the expressions of airway remodeling indicators were suppressed, and epithelial cell markers were increased. Conclusion Ferroptosis participates in the pathogenesis of asthma airway remodeling, ferroptosis inhibitor Fer-1 attenuates airway remodeling in asthma, and the application of Fer-1 provides a new therapeutic target for asthmatic airway remodeling.

Key words: Asthma, Airway remodeling, Ferroptosis, Ferrostatin-1, Therapeutic target

中图分类号: 

  • R562.2+5
[1] Ntontsi P, Photiades A, Zervas E, et al. Genetics and epigenetics in asthma[J]. Int J MolSci, 2021, 22(5): 2412. doi:10.3390/ijms22052412.
[2] Thomas D, McDonald VM, Pavord ID, et al. Asthma remission: what is it and how can it be achieved?[J]. Eur Respir J, 2022, 60(5): 2102583. doi:10.1183/13993003.02583-2021.
[3] Zhang YL, Kong Y, Ma Y, et al. Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines[J]. Oncogene, 2021, 40: 1425-1439. doi:10.1038/s41388-020-01622-3.
[4] Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10: 3145. doi:10.1038/s41467-019-10991-7.
[5] Lv X, Dong M, Tang W, et al. Ferroptosis, novel therapeutics in asthma[J]. Biomed Pharmacother, 2022, 153: 113516. doi:10.1016/j.biopha.2022.113516.
[6] Yang Y, Tai W, Lu N, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis[J]. Aging(Albany NY), 2020, 12(10): 9085-9102.
[7] Ali MK, Kim RY, Brown AC, et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma[J]. Eur Respir J, 2020, 55(4): 1901340. doi:10.1183/13993003.01340-2019.
[8] Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation[J]. J Clin Invest, 2022, 132(1): e151685. doi:10.1172/jci151685.
[9] Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418.
[10] Bousquet J, Jeffery PK, Busse WW, et al. Asthma. From bronchoconstriction to airways inflammation and remodeling[J]. Am J Respir Crit Care Med, 2000, 161(5): 1720-1745.
[11] Shifren A, Witt C, Christie C, et al. Mechanisms of remodeling in asthmatic airways[J]. J Allergy(Cairo), 2012, 2012: 316049. doi:10.1155/2012/316049.
[12] Benayoun L, Druilhe A, Dombret MC, et al. Airway structural alterations selectively associated with severe asthma[J]. Am J Respir Crit Care Med, 2003, 167(10): 1360-1368.
[13] Chetta A, Zanini A, Foresi A, et al. Vascular component of airway remodeling in asthma is reduced by high dose of fluticasone[J]. Am J Respir Crit Care Med, 2003, 167(5): 751-757.
[14] Brillet PY, Debray MP, Golmard JL, et al. Computed tomography assessment of airways throughout bronchial tree demonstrates airway narrowing in severe asthma[J]. Acad Radiol, 2015, 22(6): 734-742.
[15] Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthmas natural history, risk factors, underlying mechanisms, and clinical management[J]. J Allergy ClinImmunol, 2021, 148(6): 1430-1441.
[16] Schoettler N, Strek ME. Recent advances in severe asthma: from phenotypes to personalized medicine[J]. Chest, 2020, 157(3): 516-528.
[17] Banno A, Reddy AT, Lakshmi SP, et al. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma[J]. ClinSci(Lond), 2020, 134(9): 1063-1079.
[18] Chen X, Kang R, Kroemer G, et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218(6): e20210518. doi:10.1084/jem.20210518.
[19] Li XT, Song JW, Zhang ZZ, et al. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling[J]. Free RadicBiol Med, 2022, 193(Pt 1): 459-473.
[20] Pei Z, Qin Y, Fu X, et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model[J]. Redox Biol, 2022, 57: 102509. doi:10.1016/j.redox.2022.102509.
[21] Takahashi M, Mizumura K, Gon Y, et al. Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis[J]. Front Pharmacol, 2021, 12: 643980. doi:10.3389/fphar.2021.643980.
[22] Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019, 133: 144-152. doi:10.1016/j.freeradbiomed.2018.09.014.
[23] Shaheen SO, Rutterford CM, Lewis SJ, et al. Maternal selenium status in pregnancy, offspring glutathione peroxidase 4 genotype, and childhood asthma[J]. J Allergy Clin Immunol, 2015, 135(4): 1083-1085..
[24] Wenzel SE, Tyurina YY, Zhao J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3): 628-641.
[25] Zeng Z, Huang H, Zhang J, et al. HDM induce airway epithelial cell ferroptosis and promote inflammation by activating ferritinophagy in asthma[J]. FASEB J, 2022, 36(6): e22359. doi:10.1096/fj.202101977rr.
[26] Yang N, Shang Y. Ferrostatin-1 and 3-methyladenine ameliorate ferroptosis in OVA-induced asthma model and in IL-13-challenged BEAS-2B cells[J]. Oxid Med Cell Longev, 2022, 2022: 9657933. doi:10.1155/2022/9657933.
[27] Han F, Li S, Yang Y, et al. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis[J]. Bioengineered, 2021, 12(1): 5279-5288.
[1] 王静,刘晓菲,曾荣,许长娟,张锦涛,董亮. 基于机器学习算法鉴定哮喘的坏死性凋亡相关生物标志物[J]. 山东大学学报 (医学版), 2024, 62(7): 21-32.
[2] 闫金燕,杨春,李雷,吴福玲,焦永莉,张晓蔚,李晶,张瑞珍,王磊,马香. 山东省儿童百日咳感染与哮喘的相关性[J]. 山东大学学报 (医学版), 2024, 62(7): 33-41.
[3] 刘海霞,皇甫莎莎,桑晓玉,崔东清,毕建忠,王萍. 间充质干细胞对实验性自身免疫性脑脊髓炎小鼠铁死亡的影响[J]. 山东大学学报 (医学版), 2024, 62(6): 1-8.
[4] 张锦涛,董亮. 气道上皮及其源性细胞因子与哮喘:思考与展望[J]. 山东大学学报 (医学版), 2024, 62(5): 1-6.
[5] 丁伊人,刘婉莹,姚蕾,姚欣. 大环内酯类抗生素治疗哮喘的研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 21-27.
[6] 王婷,张丽,王刚. 神经心理性哮喘[J]. 山东大学学报 (医学版), 2024, 62(5): 28-34.
[7] 徐芳,田国雄,孙倍倍,陈馨怡,陈高莹,张睿琦,应颂敏,吴妙莲,张超,吴优倩. 重度哮喘的生物与细胞疗法研究进展[J]. 山东大学学报 (医学版), 2024, 62(5): 35-42.
[8] 石硕川,曾荣,张锦涛,张东,潘云,刘晓菲,许长娟,王莹,董亮. 基于生物信息学探索支气管哮喘中的潜在差异免疫基因和免疫浸润特征[J]. 山东大学学报 (医学版), 2024, 62(5): 43-53.
[9] 沈海涛,乔亚琴,董萍,路燕. Toll样受体4调控的程序性坏死和铁死亡对对乙酰氨基酚肝损伤的影响[J]. 山东大学学报 (医学版), 2024, 62(4): 1-8.
[10] 步美玲,王金荣,冯梅,孙立锋. FOXM1在呼吸道病毒感染致哮喘小鼠急性发作中的机制[J]. 山东大学学报 (医学版), 2023, 61(6): 1-9.
[11] 姜卉,魏甜,李建平,王聪. 葛根素对索拉非尼心肌毒性的保护及作用机制[J]. 山东大学学报 (医学版), 2022, 60(8): 14-22.
[12] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[13] 张高瑞,张玉婷,赵雨萱,王方青,于德新. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报 (医学版), 2021, 59(4): 48-55.
[14] 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27-33.
[15] 蔡秋景,张倩,何学佳,孙文丽,郭爱丽,张楠,朱薇薇. 气道平滑肌细胞通过TGF-β1/Smad3信号通路调节IL-33的表达参与哮喘[J]. 山东大学学报 (医学版), 2020, 58(4): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冀永娟,项紫霓,匡桂芳. 青岛市两所三甲医院医务人员职业倦怠对生活质量影响的路径分析[J]. 山东大学学报 (医学版), 2020, 1(7): 102 -107 .
[2] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[3] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81 -87 .
[4] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[5] 王东盛,刘倩,寇妍. PDGF及其受体在大鼠胰腺纤维化中的作用[J]. 山东大学学报(医学版), 2006, 44(4): 360 -363 .
[6] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[7] 焉传祝,王伟,纪坤乾,赵玉英. 线粒体与脑疾病[J]. 山东大学学报 (医学版), 2020, 1(8): 34 -41 .
[8] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74 -80 .
[9] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42 -49, 73 .
[10] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .