您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (11): 85-95.doi: 10.6040/j.issn.1671-7554.0.2024.0632

• 公共卫生与预防医学 • 上一篇    

孟德尔随机化探究细胞因子与慢性肾脏病的因果关系

吴飞1,李清丽2,肖振卫3   

  1. 1.山东中医药大学第一临床医学院, 山东 济南 250014;2中国中医科学院望京医院老年医学科, 北京 100102;3.山东中医药大学附属医院肾内科, 山东 济南 250014
  • 发布日期:2024-11-25
  • 通讯作者: 肖振卫. E-mail:1654647003@qq.com
  • 基金资助:
    山东省老年医学学会科技发展计划项目(LKJGG2021W113)

Causal association between cytokines and chronic kidney disease based on Mendelian randomization

WU Fei1, LI Qingli2, XIAO Zhenwei3   

  1. 1. The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    2. Department of Geriatrics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China;
    3. Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
  • Published:2024-11-25

摘要: 目的 采用孟德尔随机化(Mendelian randomization, MR)方法探究细胞因子与慢性肾脏病(chronic kidney disease, CKD)的因果关系。 方法 从全基因组关联分析(genome-wide association studies, GWAS)中获取研究数据,选择相互独立且与细胞因子相关的遗传位点作为工具变量(instrumental variables, IVs)。以逆方差加权法(inverse variance weighted, IVW)为主要方法,加权中位数法(Weighted Median)、MR Egger回归为补充进行MR分析。敏感性分析采用MR Egger 截距项检验、留一法分析和Cochrans Q检验。并用Bonferroni法进行校正。当P<0.055×10-2(0.050/91)时,结果具有显著的因果关系;当0.055×10-2P<0.050时,结果具有潜在的因果关系。 结果 共发现10种炎症因子与CKD有显著或潜在的关联。与CKD存在正向因果关联的有6种,显著相关的为IL-17C(IVW对应的OR=1.171,95%CI:1.079~1.270,P=1.426×10-4),潜在相关的为IL-17A、CXCL10、MCP-4、DNER、CCL-4;与CKD存在负向因果关联的有4种,无显著相关,潜在相关的为CD40R、CD244、OPG、MIP-1a;敏感性分析证实了研究结果的准确性和稳健性。 结论 IL-17C显著增加CKD的风险,IL-17A、CXCL10、MCP-4、DNER、CCL-4可能增加CKD的风险,CD40R、CD244、OPG、MIP-1a可能降低CKD的风险。

关键词: 慢性肾脏病, 细胞因子, 孟德尔随机化, 因果推断, 药物靶点

Abstract: Objective To explore the causal relationship between cytokines and chronic kidney disease(CKD)using the Mendelian randomization(MR)analysis. Methods Data for the analysis were sourced from genome-wide association studies(GWAS)and independent genetic loci associated with cytokines were selected as instrumental variables(IVs). MR analysis was conducted primarily using the inverse variance weighted(IVW)method, complemented by the Weighted Median and MR Egger regression approaches. Sensitivity analysis was performed using MR Egger regression intercept term test, leave-one-out analysis, and Cochrans Q tests. The Bonferroni correction was applied and the results were considered significantly causal when P<0.055×10-2(0.050/91), and potentially causal when 0.055×10-2P<0.050. Results A total of 10 inflammatory factors were identified as significantly or potentially associated with CKD. Six cytokines showed positive causal associations with CKD, with IL-17C being significantly associated(for IVW, OR=1.171, 95%CI: 1.079-1.270, P=1.426×10-4). Cytokines potentially associated with increased risk of CKD included IL-17A, CXCL10, MCP-4, DNER, and CCL-4. Four cytokines demonstrated negative causal associations with CKD, although none were significantly correlated. CD40R, CD244, OPG, and MIP-1a were potentially associated with a reduced risk of CKD included. The precision and robustness of the findings were confirmed by sensitivity tests. Conclusion IL-17C significantly increases the risk of CKD, while IL-17A, CXCL10, MCP-4, DNER and CCL-4 may increase the risk of CKD. In contrast, CD40R, CD244, OPG, and MIP-1a may lower the risk of CKD.

Key words: Chronic kidney disease, Cytokines, Mendelian randomization, Causal inference, Drug target

中图分类号: 

  • R692.5
[1] Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease[J]. Lancet, 2021, 398(10302): 786-802.
[2] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225): 709-733.
[3] Li R, Shi CR, Wei CT, et al. Fufang Shenhua Tablet inhibits renal fibrosis by inhibiting PI3K/AKT[J]. Phytomedicine, 2023, 116: 154873. doi:10.1016/j.phymed.2023.154873.
[4] Zhu JH, Wang L, Ma ZX, et al. Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple ameliorates renal interstitial fibrosis in CKD rats by inhibiting the TGF-β1/MAPK signaling pathway[J]. J Ethnopharmacol, 2024, 318(Pt B): 117039. doi:10.1016/j.jep.2023.117039.
[5] Cao R, Su W, Sheng JY, et al. Estrogen receptor β attenuates renal fibrosis by suppressing the transcriptional activity of Smad3[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(6): 166755. doi:10.1016/j.bbadis.2023.166755.
[6] Yang S, Wu H, Li YC, et al. Inhibition of PFKP in renal tubular epithelial cell restrains TGF-β induced glycolysis and renal fibrosis[J]. Cell Death Dis, 2023, 14(12): 816. doi:10.1038/s41419-023-06347-1..
[7] Kalantar-Zadeh K. The latest addition to the inflammatory homeboys in chronic kidney disease: interleukin-8[J]. Nephron Clin Pract, 2006, 102(2): c59-c60.
[8] Lin ZY, Chen A, Cui HW, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease[J]. FASEB J, 2022, 36(12): e22625. doi:10.1096/fj.202200706RR.
[9] Xiong W, Xiong ZY, Song AN, et al. UCP1 alleviates renal interstitial fibrosis progression through oxidative stress pathway mediated by SIRT3 protein stability[J]. J Transl Med, 2023, 21(1): 521. doi:10.1186/s12967-023-04376-0.
[10] Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551.
[11] Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals[J]. Nat Genet, 2019, 51(6): 957-972.
[12] Birney E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. doi:10.1101/cshperspect.a041302.
[13] Zhu ZH, Zheng ZL, Zhang FT, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data[J]. Nat Commun, 2018, 9(1): 224. doi:10.1038/s41467-017-02317-2.
[14] Zhao GR, Lu Z, Sun YY, et al. Dissecting the causal association between social or physical inactivity and depression: a bidirectional two-sample Mendelian Randomization study[J]. Transl Psychiatry, 2023, 13(1): 194. doi:10.1038/s41398-023-02492-5.
[15] Yeung CHC, Schooling CM. Systemic inflammatory regulators and risk of Alzheimers disease: a bidirectional Mendelian-randomization study[J]. Int J Epidemiol, 2021, 50(3): 829-840.
[16] Xiang MM, Wang YL, Gao ZY, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: a Mendelian randomization[J]. Front Immunol, 2022, 13: 985729. doi:10.3389/fimmu.2022.985729.
[17] Choi KW, Chen CY, Stein MB, et al. Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample Mendelian randomization study[J]. JAMA Psychiatry, 2019, 76(4): 399-408.
[18] 陈帅,金杰,韩化伟,等.两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J].中国组织工程研究, 2025, 29(8): 1556-1564. CHEN Shuai, JIN Jie, HAN Huawei, et al. Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1556-1564.
[19] 陈世崧,黄凯,徐泓杰,等.91种炎症蛋白与5种心血管疾病的因果关系:双向孟德尔随机化研究[J].海军军医大学学报, 2024, 45(5): 558-568. CHEN Shisong, HUANG Kai, XU Hongjie, et al. Causal relationship between 91 inflammatory proteins and 5 cardiovascular diseases: a bidirectional Mendelian randomization[J]. Academic Journal of Naval Medical University, 2024, 45(5): 558-568.
[20] Lai R, Yin BZ, Feng ZY, et al. The causal relationship between 41 inflammatory cytokines and hypothyroidism: bidirectional two-sample Mendelian randomization study[J]. Front Endocrinol, 2023, 14: 1332383. doi:10.3389/fendo.2023.1332383.
[21] Chen X, Zhang SM, Wu X, et al. Inflammatory cytokines and oral lichen planus: a Mendelian randomization study[J]. Front Immunol, 2024, 15: 1332317. doi:10.3389/fimmu.2024.1332317.
[22] Papadimitriou N, Dimou N, Tsilidis KK, et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis[J]. Nat Commun, 2020, 11(1): 597. doi:10.1038/s41467-020-14389-8.
[23] Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioners perspective[J]. Genet Epidemiol, 2019, 43(6): 609-616.
[24] Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4): 486-496.
[25] Wang SN, Zhu H, Pan L, et al. Systemic inflammatory regulators and risk of acute-on-chronic liver failure: a bidirectional mendelian-randomization study[J]. Front Cell Dev Biol, 2023, 11: 1125233. doi:10.3389/fcell.2023.1125233.
[26] Hwang LD, Lawlor DA, Freathy RM, et al. Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight[J]. Int J Epidemiol, 2019, 48(5): 1457-1467.
[27] Georgakis MK, Gill D, Rannikmäe K, et al. Genetically determined levels of circulating cytokines and risk of stroke[J]. Circulation, 2019, 139(2): 256-268.
[28] 唐仕浩, 张堃, 刘春贵, 等. 孟德尔随机化探究细胞因子与深静脉血栓的因果效应[J]. 现代预防医学, 2021, 48(4): 759-764. TANG Shihao, ZHANG Kun, LIU Chungui, et al. Causal association between cytokines and deep vein thrombosis based on Mendelian randomization[J]. Modern Preventive Medicine, 2021, 48(4): 759-764.
[29] Ji D, Chen WZ, Zhang L, et al. Gut microbiota, circulating cytokines and dementia: a Mendelian randomization study[J]. J Neuroinflammation, 2024, 21(1): 2. doi:10.1186/s12974-023-02999-0.
[30] 吴彤,杨晶玉,林盪,等.基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J].山东大学学报(医学版), 2024, 62(5): 54-63. WU Tong, YANG Jingyu, LIN Dang, et al. Genetic association of lipids and lipid-lowering drugs with chronic obstructive pulmonary disease based on Mendelian randomization[J]. Journal of Shandong University(Health Sciences), 2024, 62(5): 54-63.
[31] Bowden J, Spiller W, Del Greco MF, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression[J]. Int J Epidemiol, 2018, 47(6): 2100. doi:10.1093/ije/dyy265.
[32] Yu K, Chen XF, Guo J, et al. Assessment of bidirectional relationships between brain imaging-derived phenotypes and stroke: a Mendelian randomization study[J]. BMC Med, 2023, 21(1): 271. doi:10.1186/s12916-023-02982-9.
[33] Yu Z, Zhang LJ, Zhang G, et al. Lipids, apolipoproteins, statins, and intracerebral hemorrhage: a Mendelian randomization study[J]. Ann Neurol, 2022, 92(3): 390-399.
[34] Chen Z, Chen ZY, Jin XL. Mendelian randomization supports causality between overweight status and accelerated aging[J]. Aging Cell, 2023, 22(8): e13899. doi:10.1111/acel.13899.
[35] Li NN, Yang K, Deng L, et al. Mendelian randomization study supports positive bidirectional causal relationships between genetically predicted insomnia symptom and liability to benign prostatic hyperplasia[J]. BMC Urol, 2024, 24(1): 91. doi:10.1186/s12894-024-01474-z.
[36] Nolte IM. Metasubtract: an R-package to analytically produce leave-one-out meta-analysis GWAS summary statistics[J]. Bioinformatics, 2020, 36(16): 4521-4522.
[37] 任清林,何文博,岳佳瑞,等.两样本孟德尔随机化分析肠道菌群与肺癌的因果关系[J].中国胸心血管外科临床杂志, 2023, 30(11): 1618-1627. REN Qinglin, HE Wenbo, YUE Jiarui, et al. Association of lung cancer and gut microbiota: a two-sample Mendelian randomization analysis[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2023, 30(11): 1618-1627.
[38] Frk W, Ku cmierz J, Szlagor M, et al. New insights into molecular mechanisms of chronic kidney disease[J]. Biomedicines, 2022, 10(11): 2846. doi:10.3390/biomedicines10112846.
[39] Kadatane SP, Satariano M, Massey M, et al. The role of inflammation in CKD[J]. Cells, 2023, 12(12):1581. doi:10.3390/cells12121581.
[40] Nies JF, Panzer U. IL-17C/IL-17RE: emergence of a unique axis in TH17 biology[J]. Front Immunol, 2020, 11: 341. doi:10.3389/fimmu.2020.00341.
[41] Wang F, Yin JY, Lin YY, et al. IL-17C has a pathogenic role in kidney ischemia/reperfusion injury[J]. Kidney Int, 2020, 97(6): 1219-1229.
[42] Zhang FF, Yin JY, Liu L, et al. IL-17C neutralization protects the kidney against acute injury and chronic injury[J]. EBioMedicine, 2023, 92: 104607. doi:10.1016/j.ebiom.2023.104607.
[43] Krohn S, Nies JF, Kapffer S, et al. IL-17C/IL-17 receptor E signaling in CD4+T cells promotes TH17 cell-driven glomerular inflammation[J]. J Am Soc Nephrol, 2018, 29(4): 1210-1222.
[44] Huang J, Meng S, Hong S, et al. IL-17C is required for lethal inflammation during systemic fungal infection[J]. Cell Mol Immunol, 2016, 13(4): 474-483. doi:10.1038/cmi.2015.56.
[45] Li XX, Bechara R, Zhao JJ, et al. IL-17 receptor-based signaling and implications for disease[J]. Nat Immunol, 2019, 20(12): 1594-1602.
[46] Lavoz C, Matus YS, Orejudo M, et al. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy[J]. Kidney Int, 2019, 95(6): 1418-1432.
[47] Li LX, Luo R, Yang Y, et al. Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A[J]. Ren Fail, 2020, 42(1): 1173-1183.
[48] Gao J, Wu LL, Wang SY, et al. Role of chemokine(C-X-C motif)ligand 10(CXCL10)in renal diseases[J]. Mediators Inflamm, 2020, 2020: 6194864. doi:10.1155/2020/6194864.
[49] Gao J, Wu LL, Zhao YH, et al. Cxcl10 deficiency attenuates renal interstitial fibrosis through regulating epithelial-to-mesenchymal transition[J]. Exp Cell Res, 2022, 410(2): 112965.
[50] Tinel C, Vermorel A, Picciotto D, et al. Deciphering the prognostic and predictive value of urinary CXCL10 in kidney recipients with BK virus reactivation[J]. Front Immunol, 2020, 11: 604353. doi:10.3389/fimmu.2020.604353.
[51] Ho J, Schaub S, Jackson AM, et al. Multicenter validation of a urine CXCL10 assay for noninvasive monitoring of renal transplants[J]. Transplantation, 2023, 107(7): 1630-1641.
[52] Miura Y, Motoshima T, Anami T, et al. Predictive value of CXCL10 for the occurrence of immune-related adverse events in patient with renal cell carcinoma[J]. Microbiol Immunol, 2023, 67(7): 345-354.
[53] Li LF, Dai F, Wang LL, et al. CCL13 and human diseases[J]. Front Immunol, 2023, 14: 1176639. doi:10.3389/fimmu.2023.1176639.
[54] Wang Q, Li YQ, Li JM, et al. Delta and Notch-like epidermal growth factor-related receptor suppresses human glioma growth by inhibiting oncogene TOR4A[J]. J Cancer Res Ther, 2022, 18(5): 1372-1379.
[55] Hughes CE, Nibbs RJB. A guide to chemokines and their receptors[J]. FEBS J, 2018, 285(16): 2944-2971.
[56] Zhang SG, Breidenbach JD, Khalaf FK, et al. Renal fibrosis is significantly attenuated following targeted disruption of Cd40 in experimental renal ischemia[J]. J Am Heart Assoc, 2020, 9(7): e014072. doi:10.1161/JAHA.119.014072.
[57] Zhang SG, Breidenbach JD, Russell BH, et al. CD40/CD40L signaling as a promising therapeutic target for the treatment of renal disease[J]. J Clin Med, 2020, 9(11): 3653. doi:10.3390/jcm9113653.
[58] Perper SJ, Westmoreland SV, Karman J, et al. Treatment with a CD40 antagonist antibody reverses severe proteinuria and loss of saliva production and restores glomerular morphology in murine systemic lupus erythematosus[J]. J Immunol, 2019, 203(1): 58-75.
[59] Tapia-Llanos R, Muñoz-Valle JF, Román-Fernández IV, et al. Association of soluble CD40 levels with -1 C>T CD40 polymorphism and chronic kidney disease in systemic lupus erythematosus[J]. Mol Genet Genomic Med, 2019, 7(12): e1014. doi:10.1002/mgg3.1014.
[60] Wagner AH, Klersy A, Sultan CS, et al. Potential role of soluble CD40 receptor in chronic inflammatory diseases[J]. Biochem Pharmacol, 2023, 217: 115858. doi:10.1016/j.bcp.2023.115858.
[61] Sun L, Gang XK, Li Z, et al. Advances in understanding the roles of CD244(SLAMF4)in immune regulation and associated diseases[J]. Front Immunol, 2021, 12: 648182. doi:10.3389/fimmu.2021.648182.
[62] Lou XY, Yang Z, Wu KX, et al. Elevated serum osteoprotegerin is associated with reduced risks of albuminuria and CKD progression in patients with type 2 diabetes[J]. Diabetes Metab Syndr Obes, 2022, 15: 3831-3841. doi:10.2147/DMSO.S390483.
[63] Aguilar A, Gifre L, Ureña-Torres P, et al. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis[J]. Front Physiol, 2023, 14: 1177829. doi:10.3389/fphys.2023.1177829.
[1] 张展,李建锋,李燕玲,王博雯,昂文成林龙珠,王鑫,张小明,谢萍. 饮食因素与子痫前期因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2024, 62(8): 59-66.
[2] 冯悦,俞一凡,吴思佳,李洪凯,薛付忠. 内脏脂肪组织与肺部疾病的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2024, 62(7): 48-55.
[3] 张锦涛,董亮. 气道上皮及其源性细胞因子与哮喘:思考与展望[J]. 山东大学学报 (医学版), 2024, 62(5): 1-6.
[4] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
[5] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[6] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[7] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[8] 邵长秀,贺青卿,庄晓璇,周鹏,李小磊,岳涛,徐婧,李陈钰,郭浩男,庄大勇. 甲状旁腺全切加微量腺体自体移植术治疗109例肾性继发性甲状旁腺功能亢进的长期疗效[J]. 山东大学学报 (医学版), 2023, 61(4): 42-48.
[9] 王园园,孙云. 合并新型冠状病毒肺炎的维持性血液透析患者死亡危险因素[J]. 山东大学学报 (医学版), 2023, 61(11): 68-73.
[10] 常鑫,刘世佳,韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报 (医学版), 2023, 61(10): 58-62.
[11] 张凯,司书成,李吉庆,刘晓雯,赵英琪,薛付忠. 睡眠性状与肠易激综合征的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2022, 60(8): 109-114.
[12] 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117.
[13] 李华玉,时萧寒,张新蕊,李峰. 203例胶质瘤患者睡眠障碍与炎症细胞因子的关联分析[J]. 山东大学学报 (医学版), 2022, 60(12): 26-30.
[14] 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88.
[15] 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!