您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (8): 59-66.doi: 10.6040/j.issn.1671-7554.0.2023.1136

• • 上一篇    

饮食因素与子痫前期因果关系的孟德尔随机化分析

张展1,李建锋1,李燕玲1,王博雯1,昂文成林龙珠3,王鑫2,张小明2,谢萍1   

  • 发布日期:2024-09-20
  • 通讯作者: 谢萍. E-mail:pingxie66@163.com
  • 基金资助:
    甘肃省国际科技合作项目(20YF3WA011);兰州市人才创新创业项目(2018-RC-72);甘肃省中医药科研项目(GZKZ-2021-7);甘肃省人民医院优秀博士生培育计划(22GSSYD-14)

Mendelian randomization analysis of causality between dietary factors and preeclampsia

ZHANG Zhan1, LI Jianfeng1, LI Yanling1, WANG Bowen1, ANGWEN Chenglinlongzhu3, WANG Xin2, ZHANG Xiaoming2, XIE Ping1   

  1. 1. Department of Cardiovascular Medicine, Gansu Provincial Peoples Hospital;
    2. The First Clinical College of Gansu University of Traditional Chinese Medicine;
    3. The First Clinical Medical College of Lanzhou University, lanzhou 730000, Gansu, China
  • Published:2024-09-20

摘要: 目的 探讨饮食因素与子痫前期的可能因果效应。 方法 利用全基因组关联研究(genome-wide association studies, GWAS)数据,采用逆方差加权法(inverse-variance weighted, IVW)、加权中位数(weighted median, WM)、MR Egger回归(MR-Egger regression)进行孟德尔随机化(Mendelian randomization, MR)分析,评估饮食因素与子痫前期的因果关系。并且,进行异质性检验、敏感性分析、多效性分析。 结果 奶酪摄入量(IVW: OR=0.504, 95%CI: 0.314~0.808, P=0.004)、沙拉/生蔬菜摄入量(IVW: OR=0.195, 95%CI: 0.041~0.923, P=0.039)与子痫前期存在负向因果关系。且所有结果均不存在多效性,留一法亦提示所得结果稳健。其他饮食因素未发现与子痫前期具有因果关系。 结论 这项双样本MR分析发现奶酪摄入量、沙拉/生蔬菜摄入量与欧洲人群子痫前期风险降低有关,但仍需更大的GWAS数据进一步验证这种关系,同时研究其中潜在关联机制,以支持该结论。此外,其他饮食因素未发现与子痫前期具有因果关系。

关键词: 饮食, 奶酪, 蔬菜, 子痫前期, 孟德尔随机化

Abstract: Objective To explore the potential causal link between dietary factors and preeclampsia. Methods By leveraging Genome-wide association studies(GWAS)data, Mendelian randomization(MR)analyses were employed utilizing Inverse-variance weighted(IVW), Weighted median(WM), and MR-Egger regression techniques to assess the causal association between dietary factors and preeclampsia. Furthermore, heterogeneity tests, sensitivity analyses, and pleiotropy assessments to were conducted ensure the robustness of the findings. Results The analysis revealed a negative causal relationship between preeclampsia and the consumption of cheese(IVW: OR=0.504, 95%CI: 0.314-0.808, P=0.004)as well as salads/raw vegetables(IVW: OR=0.195, 95%CI: 0.041-0.923, P=0.039). All results demonstrated an absence of pleiotropic effects, and the leave-one-out approach further validated the robustness of the findings. No causal associations were observed between preeclampsia and other dietary factors examined. Conclusion A reduced risk of preeclampsia associated with cheese intake and the consumption of salads/raw vegetables is identified in European populations. However, confirmation of these relationships and exploration of the underlying mechanisms require validation using larger GWAS datasets. Additionally, no causal links are established between preeclampsia and the remaining dietary factors investigated.

Key words: Diet, Cheese, Vegetable, Preeclampsia, Mendelian randomization

中图分类号: 

  • R714.7
[1] Achamrah N, Ditisheim A. Nutritional approach to preeclampsia prevention[J]. Curr Opin Clin Nutr Metab Care, 2018, 21(3): 168-173.
[2] Brantsaeter AL, Haugen M, Samuelsen SO, et al. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant Norwegian women[J]. J Nutr, 2009, 139(6): 1162-1168.
[3] Allen R, Rogozinska E, Sivarajasingam P, et al. Effect of diet- and lifestyle-based metabolic risk-modifying interventions on preeclampsia: a meta-analysis[J]. Acta Obstet Gynecol Scand, 2014, 93(10): 973-985.
[4] Syngelaki A, Sequeira Campos M, Roberge S, et al. Diet and exercise for preeclampsia prevention in overweight and obese pregnant women: systematic review and meta-analysis[J]. J Matern Fetal Neonatal Med, 2019, 32(20):3495-3501.
[5] Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27(8): 1133-1163.
[6] Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates[J]. Eur J Epidemiol, 2018, 33(10): 947-952.
[7] Botelho J, Machado V, Mendes JJ, et al. Causal association between periodontitis and Parkinsons disease: a bidirectional Mendelian randomization study[J]. Genes, 2021, 12(5): 772.
[8] Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985-1998.
[9] Phelan M, Kerins D. The potential role of milk-derived peptides in cardiovascular disease[J]. Food Funct, 2011, 2(3/4): 153-167.
[10] Helal A, Tagliazucchi D. Peptidomics profile, bioactive peptides identification and biological activities of six different cheese varieties[J]. Biology, 2023, 12(1): 78.
[11] Miguel M, Gómez-Ruiz Já, Recio I, et al. Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats[J]. Mol Nutr Food Res, 2010, 54(10): 1422-1427.
[12] Engberink MF, Hendriksen MA, Schouten EG, et al. Inverse association between dairy intake and hypertension: the Rotterdam Study[J]. Am J Clin Nutr, 2009, 89(6): 1877-1883.
[13] Khaing W, Vallibhakara SA, Tantrakul V, et al. Calcium and vitamin D supplementation for prevention of preeclampsia: a systematic review and network meta-analysis[J]. Nutrients, 2017, 9(10): 1141.
[14] Woo Kinshella ML, Sarr C, Sandhu A, et al. Calcium for pre-eclampsia prevention: a systematic review and network meta-analysis to guide personalised antenatal care[J]. BJOG, 2022, 129(11): 1833-1843.
[15] Carroli G, Merialdi M, Wojdyla D, et al. Effects of calcium supplementation on uteroplacental and fetoplacental blood flow in low-calcium-intake mothers: a randomized controlled trial[J]. Am J Obstet Gynecol, 2010, 202(1): 45.e1-9.
[16] DeSousa J, Tong M, Wei J, et al. The anti-inflammatory effect of calcium for preventing endothelial cell activation in preeclampsia[J]. J Hum Hypertens, 2016, 30(5): 303-308.
[17] Nordqvist M, Jacobsson B, Brantsæter AL, et al. Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: a prospective observational cohort study in Norway[J]. BMJ Open, 2018, 8(1): e018021. doi:10.1136/bmjopen-2017-018021.
[18] Oniszczuk A, Oniszczuk T, Gancarz M, et al. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases[J]. Molecules, 2021, 26(4): 1172.
[19] Matsutomo T. Potential benefits of garlic and other dietary supplements for the management of hypertension[J]. Exp Ther Med, 2020, 19(2): 1479-1484.
[20] Kinshella MW, Omar S, Scherbinsky K, et al. Maternal dietary patterns and pregnancy hypertension in low- and middle-income countries: a systematic review and meta-analysis[J]. Adv Nutr, 2021, 12(6): 2387-2400.
[21] Mekie M, Mekonnen W, Assegid M. Cohabitation duration, obstetric, behavioral and nutritional factors predict preeclampsia among nulliparous women in West Amhara Zones of Ethiopia: age matched case control study[J]. PLoS One, 2020, 15(1): e0228127. doi:10.1371/journal.pone.0228127.
[22] Endeshaw M, Abebe F, Bedimo M, et al. Diet and pre-eclampsia: a prospective multicentre case-control study in Ethiopia[J]. Midwifery, 2015, 31(6): 617-624.
[23] Zerfu TA, Mekuria A. Pregnant women have inadequate fiber intake while consuming fiber-rich diets in low-income rural setting: Evidences from Analysis of common “ready-to-eat” stable foods[J]. Food Sci Nutr, 2019, 7(10): 3286-3292.
[24] Bînǎ AM, Sturza A, Iancu I, et al. Placental oxidative stress and monoamine oxidase expression are increased in severe preeclampsia: a pilot study[J]. Mol Cell Biochem, 2022, 477(12): 2851-2861.
[25] Aouache R, Biquard L, Vaiman D, et al. Oxidative stress in preeclampsia and placental diseases[J]. Int J Mol Sci, 2018, 19(5): 1496.
[26] Chiarello DI, Abad C, Rojas D, et al. Oxidative stress: normal pregnancy versus preeclampsia[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(2): 165354. doi:10.1016/j.bbadis.2018.12.005.
[27] Ebegboni VJ, Balahmar RM, Dickenson JM, et al. The effects of flavonoids on human first trimester trophoblast spheroidal stem cell self-renewal, invasion and JNK/p38 MAPK activation: understanding the cytoprotective effects of these phytonutrients against oxidative stress[J]. Biochem Pharmacol, 2019, 164: 289-298. doi:10.1016/j.bcp.2019.04.023.
[28] Meltzer HM, Brantsæter AL, Nilsen RM, et al. Effect of dietary factors in pregnancy on risk of pregnancy complications: results from the Norwegian Mother and Child Cohort Study[J]. Am J Clin Nutr, 2011, 94(6): 1970-1974.
[29] Hsu CC, Jhang HR, Chang WT, et al. Associations between dietary patterns and kidney function indicators in type 2 diabetes[J]. Clin Nutr, 2014, 33(1): 98-105.
[30] Kondo K, Morino K, Nishio Y, et al. Fiber-rich diet with brown rice improves endothelial function in type 2 diabetes mellitus: a randomized controlled trial[J]. PLoS One, 2017, 12(6): e0179869. doi:10.1371/journal.pone.0179869.
[31] Foo SY, Heller ER, Wykrzykowska J, et al. Vascular effects of a low-carbohydrate high-protein diet[J]. Proc Natl Acad Sci U S A, 2009, 106(36): 15418-15423.
[32] Schoenaker DA, Soedamah-Muthu SS, Callaway LK, et al. Prepregnancy dietary patterns and risk of developing hypertensive disorders of pregnancy: results from the Australian Longitudinal Study on Womens Health[J]. Am J Clin Nutr, 2015, 102(1): 94-101.
[33] Pellegrini N, Chiavaro E, Gardana C, et al. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables[J]. J Agric Food Chem, 2010, 58(7): 4310-4321.
[34] Miglio C, Chiavaro E, Visconti A, et al. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables[J]. J Agric Food Chem, 2008, 56(1): 139-147.
[35] Shi J, Le Maguer M. Lycopene in tomatoes: chemical and physical properties affected by food processing[J]. Crit Rev Biotechnol, 2000, 20(4): 293-334.
[36] Boyko EJ. Observational research: opportunities and limitations[J]. J Diabetes Complications, 2013, 27(6): 642-648.
[1] 冯悦,俞一凡,吴思佳,李洪凯,薛付忠. 内脏脂肪组织与肺部疾病的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2024, 62(7): 48-55.
[2] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
[3] 梁中昊,庄向华,黄珊,韩晓琳,华梦羽,琚丽萍,陈诗鸿. 饮食诱导肥胖雌鼠棕色脂肪组织蛋白质组学分析[J]. 山东大学学报 (医学版), 2024, 62(2): 10-19.
[4] 秦金金,曹辰媛,邢杰杰,安燕,黄煜湘. 子痫前期相关Siglec-6核心基因的预测及生物信息学分析[J]. 山东大学学报 (医学版), 2024, 62(1): 31-37.
[5] 唐玉莹,王保珍,肖培瑞,翟玉庭,王克波,陈晨,褚遵华. 烟台市市售蔬菜中重金属污染情况及膳食暴露风险[J]. 山东大学学报 (医学版), 2024, 62(1): 95-101.
[6] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[7] 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用[J]. 山东大学学报 (医学版), 2023, 61(7): 19-26.
[8] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[9] 常鑫,刘世佳,韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报 (医学版), 2023, 61(10): 58-62.
[10] 张凯,司书成,李吉庆,刘晓雯,赵英琪,薛付忠. 睡眠性状与肠易激综合征的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2022, 60(8): 109-114.
[11] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[12] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[13] 杨璇,李岩志,马伟,贾崇奇. 基于两样本孟德尔随机化的肺功能与新型冠状病毒肺炎病死风险的因果关系[J]. 山东大学学报 (医学版), 2021, 59(7): 104-111.
[14] 李艳,孙凤娇,张天然,王雨心,张正铎,高希宝. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报 (医学版), 2020, 58(5): 98-106.
[15] 李云霞,李洪凯,马韫韬,于媛媛,孙晓茹,刘新辉, 司书成,侯蕾,袁同慧,刘璐,李文超,薛付忠,刘言训. 基于两样本孟德尔随机化的身高和冠心病风险之间因果关系[J]. 山东大学学报 (医学版), 2020, 58(5): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!