您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2024, Vol. 62 ›› Issue (7): 48-55.doi: 10.6040/j.issn.1671-7554.0.2024.0534

• 呼吸系统疾病精准诊疗专题 • 上一篇    下一篇

内脏脂肪组织与肺部疾病的孟德尔随机化研究

冯悦1,2,俞一凡1,2,吴思佳1,2,李洪凯1,2,薛付忠1,2   

  1. 1.山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012;2.国家健康医疗大数据研究院, 山东 济南 250003
  • 发布日期:2024-09-20
  • 通讯作者: 薛付忠. E-mail:xuefzh@sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(82173625)

Mendelian randomization study of visceral adipose tissue and lung diseases

FENG Yue1,2, YU Yifan1,2, WU Sijia1,2, LI Hongkai1,2, XUE Fuzhong1,2   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. National Institute of Health Data Science of China, Jinan 250003, Shandong, China
  • Published:2024-09-20

摘要: 目的 采用两样本孟德尔随机化(mendelian randomization, MR)方法探究肥胖与肺部疾病的因果关系。 方法 采用逆方差加权法(inverse variance weighted, IVW)和6种基于不同假设下的MR方法,利用全基因组关联研究(genome-wide association study, GWAS)汇总数据,评估内脏脂肪组织(visceral adipose tissue, VAT)与肺部疾病(慢性阻塞性肺病、睡眠呼吸暂停、肺癌、肺炎、肺栓塞、特发性肺纤维化、肺结核)之间的因果关系。采用留一法、Cochrans Q检验,MR-Egger回归截距项检验、MR-PRESSO检验进行敏感性分析,评估工具变量的异质性、多效性和稳定性。 结果 IVW结果表明,遗传学预测的较高VAT与慢性阻塞性肺病(OR=1.56, 95%CI:1.33~1.84, P<0.001)、睡眠呼吸暂停(OR=1.76, 95%CI:1.53~2.03, P<0.001)、肺癌(OR=1.39, 95%CI: 1.23~1.58, P<0.001)、肺炎(OR=1.22, 95%CI:1.15~1.30, P<0.001)的较高发生风险存在因果关联。除了MR-Egger,其他4种MR方法结果均与主要分析结果一致。此外,有提示性证据支持较高VAT会增加肺栓塞(OR=1.18, 95%CI:1.04~1.34, P=0.009)和特发性肺纤维化(OR=1.00, 95%CI:1.00~1.00, P=0.011)的发生风险。 结论 VAT累积可能增加慢性阻塞性肺病、睡眠呼吸暂停、肺癌、肺炎、肺栓塞和特发性肺纤维化的发生风险。

关键词: 内脏脂肪组织, 肺部疾病, 孟德尔随机化, 因果推断, 肥胖

Abstract: Objective To investigate the causal relationship between obesity and lung diseases using Mendelian randomization(MR)methodology. Methods Employing the inverse variance weighted(IVW)method in conjunction with six distinct MR methodologies, and utilizing summary data from genome-wide association studies(GWAS), the causal relationships between visceral adipose tissue(VAT)and lung diseases, including chronic obstructive pulmonary disease, sleep apnea, lung cancer, pneumonia, pulmonary embolism, idiopathic pulmonary fibrosis and tuberculosis, were assessed. Sensitivity analysis was performed using the leave-one-out method, Cochrans Q test, MR-Egger regression intercept term test, and MR-PRESSO test to evaluate the heterogeneity, pleiotropy, and stability of the instrumental variables. Results The results of the IVW method indicated that genetically predicted higher VAT was causally associated with higher occurrence risks of chronic obstructive pulmonary disease(OR=1.56, 95%CI: 1.33-1.84, P<0.001), sleep apnea(OR=1.76, 95%CI: 1.53-2.03, P<0.001), lung cancer(OR=1.39, 95%CI: 1.23-1.58, P<0.001), and pneumonia(OR=1.22, 95%CI: 1.15-1.30, P<0.001). Except for MR-Egger, the results of the other four MR methods were consistent with the main analysis results. In addition, there was evidence suggested that higher VAT would increase the occurrence risks of pulmonary embolism(OR=1.18, 95%CI: 1.04-1.34, P=0.009)and idiopathic pulmonary fibrosis(OR=1.00, 95%CI: 1.00-1.00, P=0.011). Conclusion VAT accumulation may increase the occurrence risks of chronic obstructive pulmonary disease, sleep apnea, lung cancer, pneumonia, pulmonary embolism and idiopathic pulmonary fibrosis.

Key words: Visceral adipose tissue, Lung diseases, Mendelian randomization, Causal inference, Obesity

中图分类号: 

  • R574
[1] Jadhav SP, Singh H, Hussain S, et al. Introduction to lung diseases[J]. Target Cell Signal Pathw Lung, 2021: 1-25.
[2] Al Wachami N, Guennouni M, Iderdar Y, et al. Estimating the global prevalence of chronic obstructive pulmonary disease(COPD): a systematic review and meta-analysis[J]. BMC Public Health, 2024, 24(1): 297. doi:10.1186/s12889-024-17686-9.
[3] McDonald VM. Lets talk about obesity in respiratory disease[J]. Respirology, 2024, 29(5): 363-365.
[4] Peters U, Suratt BT, Bates JHT, et al. Beyond BMI: obesity and lung disease[J]. Chest, 2018, 153(3): 702-709.
[5] Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies[J]. Nat Rev Endocrinol, 2018, 14: 513-537. doi:10.1038/s41574-018-0062-9.
[6] Ross R, Soni S, Houle SA. Negative energy balance induced by exercise or diet: effects on visceral adipose tissue and liver fat[J]. Nutrients, 2020, 12(4): E891. doi:10.3390/nu12040891.
[7] Karlsson T, Rask-Andersen M, Pan G, et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease[J]. Nat Med, 2019, 25: 1390-1395. doi:10.1038/s41591-019-0563-7.
[8] van den Borst B, Gosker HR, Koster A, et al. The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease[J]. Am J Clin Nutr, 2012, 96(3): 516-526.
[9] He S, Yang J, Li X, et al. Visceral adiposity index is associated with lung function impairment: a population-based study[J]. Respir Res, 2021, 22(1): 2. doi:10.1186/s12931-020-01599-3.
[10] Chauquet S, Zhu Z, ODonovan MC, et al. Association of antihypertensive drug target genes with psychiatric disorders: a Mendelian randomization study[J]. JAMA Psychiatry, 2021, 78(6): 623-631.
[11] Yin P, Tao SR, Xing ZX, et al. Association between visceral adipose tissue and asthma based on the NHANES and Mendelian randomization study[J]. Postgrad Med J, 2024: qgae031. doi:10.1093/postmj/qgae031.
[12] Sinnott-Armstrong N, Tanigawa Y, Amar D, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank[J]. Nat Genet, 2021, 53: 185-194. doi:10.1038/s41588-020-00757-z.
[13] Li Y, Wang K, Zhang Y, et al. Revealing a causal relationship between gut microbiota and lung cancer: a Mendelian randomization study[J]. Front Cell Infect Microbiol, 2023, 13: 1200299. doi:10.3389/fcimb.2023.1200299.
[14] Zheng J, Baird D, Borges MC, et al. Recent developments in Mendelian randomization studies[J]. Curr Epidemiol Rep, 2017, 4(4): 330-345.
[15] Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies[J]. Int J Epidemiol, 2013, 42(5): 1497-1501.
[16] Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50: 693-698. doi:10.1038/s41588-018-0099-7.
[17] Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665.
[18] Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314.
[19] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525.
[20] Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods using summary data[J]. Genet Epidemiol, 2020, 44(4): 313-329.
[21] Hartwig FP, Davies NM. Why internal weights should be avoided(not only)in MR-Egger regression[J]. Int J Epidemiol, 2016, 45(5): 1676-1678.
[22] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389.
[23] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses[J]. BMJ, 2003, 327(7414): 557-560.
[24] Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants[J]. Epidemiology, 2017, 28(1): 30-42.
[25] Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data[J]. Int J Epidemiol, 2017, 46(6): 1734-1739.
[26] Ryan S, Arnaud C, Fitzpatrick SF, et al. Adipose tissue as a key player in obstructive sleep apnoea[J]. Eur Respir Rev, 2019, 28(152): 190006. doi:10.1183/16000617.0006-2019.
[27] Shinohara E, Kihara S, Yamashita S, et al. Visceral fat accumulation as an important risk factor for obstructive sleep apnoea syndrome in obese subjects[J]. J Intern Med, 1997, 241(1): 11-18.
[28] Ma B, Li Y, Wang X, et al. Association between abdominal adipose tissue distribution and obstructive sleep apnea in Chinese obese patients[J]. Front Endocrinol(Lausanne), 2022, 13: 847324. doi:10.3389/fendo.2022.847324.
[29] Zheng C, Zheng X, Lin X, et al. Visceral adipose tissue indices independently correlated with obstructive sleep apnea in patients with type 2 diabetes[J]. J Diabetes Res, 2022, 2022: 4950528. doi:10.1155/2022/4950528.
[30] Harada Y, Oga T, Chihara Y, et al. Differences in associations between visceral fat accumulation and obstructive sleep apnea by sex[J]. Ann Am Thorac Soc, 2014, 11(3): 383-391.
[31] Ogata H, Mori M, Jingushi Y, et al. Impact of visceral fat on the prognosis of coronavirus disease 2019: an observational cohort study[J]. BMC Infect Dis, 2021, 21(1): 1240. doi:10.1186/s12879-021-06958-z.
[32] Watanabe M, Caruso D, Tuccinardi D, et al. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19[J]. Metabolism, 2020, 111: 154319. doi:10.1016/j.metabol.2020.154319.
[33] Pranata R, Lim MA, Huang I, et al. Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019(COVID-19): systematic review and meta-analysis[J]. Clin Nutr ESPEN, 2021, 43: 163-168. doi:10.1016/j.clnesp.2021.04.001.
[34] Chandarana H, Dane BR, Mikheev A, et al. Visceral adipose tissue in patients with COVID-19: risk stratification for severity[J]. Abdom Radiol, 2021, 46(2): 818-825.
[35] Furutate R, Ishii T, Wakabayashi R, et al. Excessive visceral fat accumulation in advanced chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2011, 6: 423-430. doi:10.2147/copd.s22885.
[36] Martin M, Almeras N, Després JP, et al. Ectopic fat accumulation in patients with COPD: an ECLIPSE substudy[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 451-460. doi:10.2147/copd.s124750.
[37] De Blasio F, Rutten EPA, Wouters EFM, et al. Preliminary study on the assessment of visceral adipose tissue using dual-energy X-ray absorptiometry in chronic obstructive pulmonary disease[J]. Multidiscip Resp Med, 2016, 11: 33. doi: 10.1186/s40248-016-0070-3.
[38] Lu Y, Tang HB, Huang PY, et al. Assessment of causal effects of visceral adipose tissue on risk of cancers: a Mendelian randomization study[J]. Int J Epidemiol, 2022, 51(4): 1204-1218.
[39] Cheng XY, Jiang SH, Pan BY, et al. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role[J]. Lipds Health Dis, 2023, 22(1): 201. doi:10.1186/s12944-023-01964-3.
[40] Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis[J]. Cardiovasc Res, 2017, 113(9): 1046-1054.
[41] Mazzoccoli G, Copetti M, Dagostino MP, et al. Epicardial adipose tissue and idiopathic deep venous thrombosis: an association study[J]. Atherosclerosis, 2012, 223(2): 378-383. doi:10.1016/j.atherosclerosis.2012.05.033.
[42] Ogren M, Eriksson H, Bergqvist D, et al. Subcutaneous fat accumulation and BMI associated with risk for pulmonary embolism in patients with proximal deep vein thrombosis: a population study based on 23 796 consecutive autopsies[J]. J Intern Med, 2005, 258(2): 166-171.
[43] Xiao XJ, Wang Y, Gao Y, et al. Abdominal visceral adipose tissue is associated with unsuspected pulmonary embolism on routine CT scans in patients with gastrointestinal cancer[J]. Br J Radiol, 2019, 92(1104): 20190526. doi:10.1259/bjr.20190526.
[44] Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity[J]. Nutr Metab Cardiovasc Dis, 2009, 19(6): 440-449.
[1] 张媛 李英敏 冯月秋 常彩云 潘华伟 王束玫. 血清脂联素水平与肥胖、胰岛素抵抗的关系探讨[J]. 山东大学学报(医学版), 2209, 47(6): 124-.
[2] 吴彤,杨晶玉,林盪,徐婉茹,曾宇鋆. 基于孟德尔随机化方法探讨脂质和降脂药物与慢性阻塞性肺病的遗传关联[J]. 山东大学学报 (医学版), 2024, 62(5): 54-63.
[3] 吴霖,石晨曦,童星. 肺良性转移性平滑肌瘤病7例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(4): 78-84.
[4] 刘雯,冯文娟,杨阳,纪昌丽,晁岚. 体质量指数对卵巢正常反应患者累积分娩率的影响[J]. 山东大学学报 (医学版), 2024, 62(3): 54-60.
[5] 许沛晨,李晓博,庄向华,娄能俊,吕丽,周玲雁,牟亚朋,宋玉文,陈诗鸿. 儿童Alstrom综合征2例并文献复习[J]. 山东大学学报 (医学版), 2024, 62(3): 107-111.
[6] 梁中昊,庄向华,黄珊,韩晓琳,华梦羽,琚丽萍,陈诗鸿. 饮食诱导肥胖雌鼠棕色脂肪组织蛋白质组学分析[J]. 山东大学学报 (医学版), 2024, 62(2): 10-19.
[7] 范佳旭, 成芳,乔俊鹏,费海程,陈学禹,赵云,贾红英. 中介或混杂因素:是否应调整肥胖以估计三卤甲烷对甲状腺功能的影响[J]. 山东大学学报 (医学版), 2024, 62(1): 102-110.
[8] 张娜娜,赵一鸣,刘新敏. 基于两样本孟德尔随机化探索子宫肌瘤与乳腺癌的因果关系[J]. 山东大学学报 (医学版), 2023, 61(8): 86-93.
[9] 张天鑫,张婷,黄鑫,韩佳沂,王淑康. 氨基酸与2型糖尿病因果关系的孟德尔随机化分析[J]. 山东大学学报 (医学版), 2023, 61(5): 102-107.
[10] 常鑫,刘世佳,韩璐. 服用阿司匹林与子宫内膜癌发病风险的孟德尔随机化关系[J]. 山东大学学报 (医学版), 2023, 61(10): 58-62.
[11] 张凯,司书成,李吉庆,刘晓雯,赵英琪,薛付忠. 睡眠性状与肠易激综合征的孟德尔随机化研究[J]. 山东大学学报 (医学版), 2022, 60(8): 109-114.
[12] 杨璇,李岩志,马伟,贾崇奇. 基于两样本孟德尔随机化的肺功能与新型冠状病毒肺炎病死风险的因果关系[J]. 山东大学学报 (医学版), 2021, 59(7): 104-111.
[13] 韩晓婷,于霞,董来慧,纳莉,牛艳玲,赵君利. 月见草油对肥胖型不孕女性代谢及肠道菌群的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 48-54.
[14] 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13.
[15] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74 -80 .
[3] 扈艳雯,王志媛,郁万江,赵蕙琛,韩合理,徐志鹏,马红,张玉超,刘元涛. 52例肥胖患者脂肪分布与代谢综合征及糖代谢指标的相关性[J]. 山东大学学报 (医学版), 2020, 1(8): 101 -106 .
[4] 张洪彬,赵寒辉,王素霞,周鹏,贺青卿,王延群,丁伟平,柳刚. 303例甲状旁腺切除术围术期观察及术后严重低钙血症危险因素分析[J]. 山东大学学报 (医学版), 2020, 1(9): 14 -20 .
[5] 宋立,张艳,刘洋,王丹. 随访2年观察1例新发突变的营养不良型大疱性表皮松解症[J]. 山东大学学报 (医学版), 2020, 1(8): 120 -122 .
[6] 刘晓菲,梁瀛,张丛溪,王娟,潘云,徐嘉蔚,常春,董亮. 92例哮喘患者血清瘦素与诱导痰嗜酸性粒细胞的关系[J]. 山东大学学报 (医学版), 2020, 1(9): 27 -33 .
[7] 王凯,沈媛媛,程宪永,李彦敏,史宁. 嗜酸性粒细胞性食管炎1例并文献复习[J]. 山东大学学报 (医学版), 2020, 1(9): 119 -121 .
[8] 王频,于君,周庆博,谢兆宏,毕建忠,王晓云,刘震,孙琳,王萍. 三七皂甙对急性脑梗塞患者血浆和脑脊液MCP-1、ET含量的影响[J]. 山东大学学报(医学版), 2006, 44(5): 455 -458 .
[9] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81 -87 .
[10] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .