山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 70-78.doi: 10.6040/j.issn.1671-7554.0.2022.1102
• 临床医学 • 上一篇
赵赓1,2,王连雷2,王宏卫3,刘新宇2
ZHAO Geng1,2, WANG Lianlei2, WANG Hongwei3, LIU Xinyu2
摘要: 目的 结合骨骼肌肉模型及腰椎有限元模型研究直立状态下不同背包方式对椎旁肌收缩和腰椎各节段椎间盘应力分布的影响。 方法 建立无负重和使用双肩包、单肩包和手提包的4种骨骼肌肉模型以及腰椎的有限元模型。使用骨骼肌肉模型分析站立位下使用3种负重方式时的肌肉收缩力和腰椎椎间压力,并将其施加在腰椎有限元模型中来分析腰椎椎体、间盘和韧带的应力分布。 结果 与无负重模型相比,双肩包、单肩包和手提包的平均椎旁肌收缩力增加了31.0%、43.4%和105.1%。双肩包模型的椎旁肌收缩力左右均衡,单肩包模型中负重侧的总体椎旁肌收缩力较大,而在手提包模型中非负重侧的椎旁肌收缩力较大。多裂肌在不同负重条件下的收缩力均有统计学差异(P<0.05)。与无负重模型相比,双肩包、单肩包和手提包模型中T12~S1平均椎间压力分别增加了37%、45%和64%。双肩包、单肩包及手提包模型的椎体平均峰值应力分别增加了71.6%、122.3%和146.6%。双肩包、单肩包及手提包模型的纤维环峰值应力分别增加了155.6%、183.4%、195.8%;髓核峰值应力分别增加了95.2%、146.9%、161.5%。 结论 左右平衡的负重方式对肌肉和腰椎间盘的产生负荷最小。当使用非平衡负重方式时,肌肉的收缩使得躯体保持平衡,但同时也使得腰椎应力增加。
中图分类号:
[1] Buchbinder R, van Tulder M, Öberg B, et al. Low back pain: a call for action[J]. Lancet, 2018, 391(10137): 2384-2388. [2] Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(6): 968-974. [3] Erdem MN, Erken HY, Aydogan M. The effectiveness of non-surgical treatments, re-discectomy and minimally invasive transforaminal lumbar interbody fusion in post-discectomy pain syndrome[J]. J Spine Surg, 2018, 4(2): 414-422. [4] Maniadakis N, Gray A. The economic burden of back pain in the UK[J]. Pain, 2000, 84(1): 95-103. [5] Lee H, Hübscher M, Moseley GL, et al. How does pain lead to disability? A systematic review and meta-analysis of mediation studies in people with back and neck pain[J]. Pain, 2015, 156(6): 988-997. [6] James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1789-1858. [7] Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017[J]. Ann Transl Med, 2020, 8(6): 299-299. [8] Chaffin DB, Ashton-Miller JA. Biomechanical aspects of low-back pain in the older worker[J]. Exp Aging Res, 1991, 17(3): 177-187. [9] Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it?[J]. Spine(Phila Pa 1976), 2006, 31(18): 2151-2161. [10] Roussouly P, Gollogly S, Berthonnaud E, et al. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position[J]. Spine(Phila Pa 1976), 2005, 30(3): 346-353. [11] Ruberté LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-A finite element model study[J]. J Biomech, 2009, 42(3): 341-348. [12] Zhu WY, Zang L, Li J, et al. A biomechanical study on proximal junctional kyphosis following long-segment posterior spinal fusion[J]. Brazilian J Med Biol Res, 2019, 52(5): 1-10. [13] Schultz A, Andersson G, Ortengren R, et al. Loads on the lumbar spine. validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals[J]. J Bone Joint Surg Am, 1982, 64(5): 713-720. [14] Kang KT, Koh YG, Son J, et al. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials[J]. Compos Part B Eng, 2017, 130: 248-256. doi:10.1016/j.compositesb.2017.07.052. [15] LaFiandra M, Harman E. The distribution of forces between the upper and lower back during load carriage[J]. Med Sci Sports Exerc, 2004, 36(3): 460-467. [16] Guo LX, Wang ZW, Zhang YM, et al. Material property sensitivity analysis on resonant frequency characteristics of the human spine[J]. J Appl Biomech, 2009, 25(1): 64-72. [17] Wu Y, Wang Y, Wu J, et al. Study of double-level degeneration of lower lumbar spines by finite element model[J]. World Neurosurg, 2016, 86: 294-299. doi: 10.1016/j.wneu.2015.09.038. [18] Rohlmann A, Zander T, Bergmann G. Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants[J]. Eur Spine J, 2005, 14(5): 445-453. [19] Wang L, Zhang B, Chen S, et al. A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis[J]. World Neurosurg, 2016, 95: 126-133. doi: 10.1016/j.wneu.2016.07.106. [20] Hsieh YY, Chen CH, Tsuang FY, et al. Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: a finite element analysis[J]. Clin Biomech, 2017, 43:115-120. doi:10.1016/j.clinbiomech.2017.02.011. [21] Denozière G, Ku DN. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc[J]. J Biomech, 2006, 39(4): 766-775. [22] Kim HJ, Kang KT, Chun HJ, et al. The influence of intrinsic disc degeneration of the adjacent segments on its stress distribution after one-level lumbar fusion[J]. Eur Spine J,2015, 24(4): 827-837. [23] Li SSW, Chow DHK. Effects of backpack load on critical changes of trunk muscle activation and lumbar spine loading during walking[J]. Ergonomics, 2018, 61(4): 553-565. [24] Wilke H, Neef P, Hinz B, et al. Intradiscal pressure together with anthropometric data-a data set for the validation of models[J]. Clin Biomech(Bristol, Avon), 2001, 16(Suppl 1): S111-126. doi:10.1016/s0268-0033(00)00103-0. [25] Rohlmann A, Graichen F, Kayser R, et al. Loads on a telemeterized vertebral body replacement measured in two patients[J]. Spine(Phila Pa 1976), 2008, 33(11): 1170-1179. [26] Yamamoto I, Panjabi M, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint[J]. Spine(Phila Pa 1976), 1989, 14(11): 1256-1260. [27] Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment[J]. J Spinal Disord Tech, 2003, 16(4): 418-423. [28] Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves[J]. J Bone Jt Surg- Ser A, 1994, 76(3): 413-424. [29] Erbulut DU, Zafarparandeh I, Hassan CR, et al. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study[J]. J Neurosurg Spine, 2015, 23(2): 200-208. [30] Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine[J]. Med Eng Phys, 2001, 23(7): 485-493. |
[1] | 朱超,孙超,刘绪昌,夏大伟,马春骋,丰荣杰. 3D打印椎间融合器在37例单节段腰椎手术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 134-140. |
[2] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[3] | 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106. |
[4] | 赵赓,买若鹏,赵景才,刘新宇. 中国人适应性腰椎微创通道:基于CT影像学测量下的解剖数据分析[J]. 山东大学学报 (医学版), 2023, 61(3): 90-96. |
[5] | 张景良, 刘新宇, 原所茂, 王连雷. 髋关节疾病合并腰椎退行性疾病(髋腰综合征)误诊误治的原因分析[J]. 山东大学学报 (医学版), 2022, 60(5): 67-73. |
[6] | 李明波,黄燕波,任东成,刘俊城,谭成双,徐继禧,丁金勇. 3种不同的腰椎内固定融合方式的有限元分析[J]. 山东大学学报 (医学版), 2022, 60(1): 55-64. |
[7] | 丁金勇,徐继禧,谭成双,刘俊城,李明波,谢炜星,任东成. 不同关节突关节不对称衡量标准的有限元评价[J]. 山东大学学报 (医学版), 2020, 58(6): 97-103. |
[8] | 贾军,赵钇伟,原所茂,田永昊,刘新宇,郑燕平. 腰椎管狭窄单节段经椎间孔椎体间融合手术前后矢状位参数值的变化[J]. 山东大学学报 (医学版), 2019, 57(5): 36-42. |
[9] | 郑燕平,周超. 腰椎后外侧融合术在腰椎退变性疾患手术中应用的再认识[J]. 山东大学学报 (医学版), 2019, 57(5): 18-22. |
[10] | 姜建元,王洪立. 退变性脊柱侧凸相关分型及选择策略[J]. 山东大学学报 (医学版), 2019, 57(5): 3-6. |
[11] | 夏海鹏,郑燕平,周超,殷军,丛伟. 骨形态发生蛋白结合后外侧融合在腰椎退行性疾病手术中的应用[J]. 山东大学学报 (医学版), 2019, 57(5): 62-66. |
[12] | 刘新宇,贾军. 腰椎管狭窄症脊柱-骨盆矢状位参数研究进展[J]. 山东大学学报 (医学版), 2019, 57(5): 30-35. |
[13] | 王冰. 腰椎完全内镜经椎板间入路技术的临床教程[J]. 山东大学学报 (医学版), 2019, 57(5): 23-29. |
[14] | 赵杰,张凯,陈辰. 腰椎矢状位力线分型及临床意义[J]. 山东大学学报 (医学版), 2019, 57(5): 13-17. |
[15] | 邱贵兴. 腰椎疾患诊治新进展[J]. 山东大学学报 (医学版), 2019, 57(5): 1-2. |
|