您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 97-103.doi: 10.6040/j.issn.1671-7554.0.2019.1390

• • 上一篇    

不同关节突关节不对称衡量标准的有限元评价

丁金勇1,徐继禧1,谭成双1,刘俊城1,李明波1,谢炜星1,任东成2   

  • 发布日期:2022-09-27
  • 通讯作者: 任东成. E-mail:rendongc@163.com
  • 基金资助:
    广东省科技厅基金(2017ZC0137)

Finite element evaluation of different facet tropism criteria

DING Jinyong1, XU Jixi1, TAN Chengshuang1, LIU Juncheng1, LI Mingbo1, XIE Weixing1, REN Dongcheng2   

  1. 1. Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China;
    2. Department of Orthopaedics, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • Published:2022-09-27

摘要: 目的 观察不同的下腰椎关节突关节不对称标准对相应腰椎节段的生物力学影响。 方法 创建L4~L5节段关节突关节对称和不对称有限元模型,包括对称模型FT 0°模型(双侧关节突关节角度均为50°)、不对称模型FT 5°模型(左侧关节突关节55°,右侧关节突关节50°)、不对称模型FT 10°模型(左侧关节突关节60°,右侧关节突关节50°)、不对称模型FT 15°模型(左侧关节突关节65°,右侧关节突关节50°),模拟正常人体前屈、后伸、左侧屈、右侧屈、左旋转、右旋转运动状态以及腰椎前剪切应力状态。对7种运动状态下各个模型的椎间盘内最大应力、椎体最大活动度、关节突关节最大接触力变化情况进行分析。 结果 椎间盘内最大应力的变化和椎体最大位移的变化趋势是一致的,在前剪切、前屈、后伸、侧弯、旋转的作用力下,椎间盘内最大应力FT 15°>FT 10°>FT 5°>FT 0°,同时,不对称模型向更加冠状位的一侧(左侧)旋转时的椎间盘内最大应力大于更加矢状位的一侧(右侧)。在前剪切、前屈、后伸、侧弯、旋转的作用力下,关节突关节最大接触力 FT 15°>FT 10°>FT 5°>FT 0°,在前屈和前剪切力作用力下,不对称模型关节突关节最大接触力明显增大。 结论 下腰椎关节突关节不对称模型的椎间盘内最大应力与椎体活动度变化相一致,随着关节突关节不对称程度的增大而增大,但5°的关节突关节不对称并不会引起明显的下腰椎椎体活动度及椎间盘内应力变化;关节突关节最大接触力随着关节突关节不对称程度增大而增大。

关键词: 下腰椎, L4~L5, 关节突关节不对称, 有限元, 生物力学

Abstract: Objective To investigate the biomechanical influence of different lower lumbar spine facet tropism(FT)criteria on the stress on the L4-L5 segment. Methods Symmetric and facet tropism finite element models of L4-L5 segment were created, including symmetrical model FT 0° model(50° facet joint angle at the bilateral side), FT 5° model(a 55° facet joint angle at the left side and a 50° facet joint angle at the right side), FT 10° model(a 60° facet joint angle at the left side and a 50° facet joint angle at the right side), FT 15° model(a 60° facet joint angle at the left side and a 50° facet joint angle at the right side). Seven stress states were simulated, including forward flexion, extension, left flexion, right flexion, left rotation, right rotation pure moments and anterior shear force. Changes of the maximum intradiscal pressure, maximum vertebral body movement and maximum facet contact force in each model under each stress state were analyzed. Results Changes of the maximum intradiscal pressure were consistent with the trend of maximum vertebral body movement. Under the force of anterior shear, flexion, extension, lateral bending and rotation, the maximum intradiscal pressure was FT 15°>FT 10°>FT 5°>FT 0°. The maximum intradiscal pressure was greater than the more sagittal side(right side)when the FT model was rotated to the more coronal side(left side). Under anterior shear force, flexion, extension, lateral bending and rotation, the maximum facet contact force was FT 15°> FT 10°> FT 5°>FT 0°. Under anterior shear force and flexion, the maximum contact force of the asymmetric joint was significantly increased. Conclusion The maximum intradiscal pressure in the FT model of the lower lumbar spine is consistent with the change of vertebral body movement, which increases with the increase of the degree of asymmetry of the facet joint angle between the left side and right side. But the facet tropism of 5° will not cause significant changes in the maximum intradiscal pressure and maximum vertebral body movement. The maximum contact force increases with the degree of asymmetry of the facet joint angle.

Key words: Lower lumbar spine, L4-L5, facet tropism, finite element, biomechanics

中图分类号: 

  • R681.5
[1] Carlson BB, Albert TJ. Lumbar disc herniation: what has the spine patient outcomes research trial taught us?[J]. Intorthop, 2019, 43(4): 853-859.
[2] Adams MA, Hutton WC. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces[J]. J Bone Joint Surg Br, 1980, 62(3): 358-362.
[3] Wang H, Zhou YJ. Facet tropism: possible role in the pathology of lumbar disc herniation in adolescents[J]. Neurosurg Pediatr, 2016, 18(1): 111-115.
[4] Li Z, Yang H, Liu M, et al. Clinical characteristics and risk factors of recurrent lumbar disk herniation: A retrospective analysis of three hundred twenty-one cases[J]. Spine(Phila Pa 1976), 2018, 43(21): 1463-1469.
[5] Liu ZY, Duan YC, Rong X, et al. Variation of facet joint orientation and tropism in lumbar degenerative spondylolisthesis and disc herniation at L4-L5: A systematic review and meta-analysis[J]. Clin Neurol Neurosurg, 2017, 161: 1-47. doi: 10.1016/j.clineuro.2017.08.005.
[6] Alonso F, Kirkpatrick CM, Jeong W, et al. Lumbar facet tropism: A comprehensive review[J]. World Neurosurg, 2017, 102: 91-96.doi: 10.1016/j.wneu.2017.02.114.
[7] Zhou Q, Teng D, Zhang T, et al. Association of facet tropism and orientation with lumbar disc herniation in young patients[J]. Neurol Sci, 2018, 39(5): 841-846.
[8] Grogan J, Nowicki BH, Schmidt TA, et al. Lumbar facet joint tropism does not accelerate degeneration of the facet joints[J]. AJNR Am J Neuroradiol, 1997, 18(7): 1325-1329.
[9] Shim CS, Park SW, Lee SH, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker[J]. Spine(Phila Pa 1976), 2008, 33(22): 820-827.
[10] Vanharanta H, Floyd T, Ohnmeiss DD, et al. The relationship of facet tropism to degenerative disc disease[J]. Spine(Phila Pa 1976), 1993, 18(8): 1000-1005.
[11] Hagg O, Wallner A. Facet joint asymmetry and protrusion of the intervertebral disc[J]. Spine(Phila Pa 1976), 1990, 15(5): 356-359.
[12] Noren R, Trafimow J, Andersson GB, et al. The role of facet joint tropism and facet angle in disc degeneration[J]. Spine(Phila Pa 1976), 1991, 16(5): 530-532.
[13] Cyron BM, Hutton WC. Articular tropism and stability of the lumbar spine[J]. Spine(Phila Pa 1976), 1980, 5(2): 168-172.
[14] 任东成, 丁金勇, 徐继禧, 等. 青少年腰椎间盘突出症患者下腰椎关节突关节不对称情况分析[J]. 中国脊柱脊髓杂志, 2019, 29(5): 437-443. REN Dongcheng, DING Jinyong, XU Jixi, et al. Analysis of facet tropism of lower lumbar spine in adolescents with lumbar disc herniation[J]. Chinese Journal of Spine and Spinal Cord, 2019, 29(5): 437-443.
[15] Karacan I, Aydin T, Sahin Z, et al. Facet joint angles in lumbar disc herniation: their relation to anthropometric features[J]. Spine(Phila Pa 1976), 2004, 29(10): 1132-1136.
[16] Kim HJ, Chun HJ, Lee HM, et al. The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine[J]. Spine J, 2013, 13(10): 1301-1308.
[17] Chadha M, Sharma G, Arora SS, et al. Association of facet tropism with lumbar disc herniation[J]. Eur Spine J, 2013, 22(5): 1045-1052.
[18] Schuller S, Charles Y, Steib JP. Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis[J]. Eur Spine J, 2011, 20(5): 713-719.
[19] Farfan HF, Sullivan JD. The relation of facet orientation to intervertebral disc failure[J]. Can J Surg, 1967, 10(2): 179-185.
[20] Boden SD, Riew KD, Yamaguchi K, et al. Orientation of the lumbar facet joints: association with degenerative disc disease[J]. J Bone Jt Surg Am, 1996, 78(3): 403-411.
[21] Loback D, Young HK, Cassidy D, et al. The relationship between facet orientation and lumbar disc herniation: the role of torsion in intervertebral disc failure[J]. Orthop Trans, 1985, 9: 560-563.
[22] Kénési C, Lesur E. Orientation of the articular processes at L4, L5, and S1. Possible role in pathology of the intervertebral disc[J]. Anat Clin, 1985, 7(1): 43-47.
[23] 周强, 滕东辉, 姜文学. 腰椎关节突关节结构异常与腰椎间盘突出[J]. 中国组织工程研究, 2017, 21(31): 5066-5071. ZHOU Qiang, TENG Donghui, JIANG Wenxue. Association of lumbar facet tropism and orientation with lumbar disc herniation[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(31): 5066-5071.
[24] 刘佳男, 夏群, 苗军, 等. 负重状态对下腰椎椎体间旋转中心的影响[J]. 中国组织工程研究, 2016, 20(9): 1282-1288. LIU Jianan, XIA Qun, MIAO Jun, et al. Effect of weight-bearing activity on the center of rotation in the lower lumbar vertebrae[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(9): 1282-1288.
[25] Song Q, Liu X, Chen DJ, et al. Evaluation of MRI and CT parameters to analyze the correlation between disc and facet joint degeneration in the lumbar three-joint complex[J]. Medicine(Baltimore), 2019, 98(40): 17336.
[1] 李明波,黄燕波,任东成,刘俊城,谭成双,徐继禧,丁金勇. 3种不同的腰椎内固定融合方式的有限元分析[J]. 山东大学学报 (医学版), 2022, 60(1): 55-64.
[2] 于海群1,张泳1,陶祥臣1,党慧2,李志伟1,王晓君3,牟国营1. 兔眼紫外交联术去上皮与保留上皮的角膜生物力学差异性研究[J]. 山东大学学报(医学版), 2012, 50(4): 80-.
[3] 靳淑梅1,王旭霞1,3,张丽娜1,任旭升1,2,张君1,3. 不同工况下埋伏牙的位移趋势及牙周应力的三维有限元分析[J]. 山东大学学报(医学版), 2010, 48(12): 67-74.
[4] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42-45.
[5] . 拔牙创不同愈合期对磨牙远移影响的三维有限元分析[J]. 山东大学学报(医学版), 2009, 47(10): 68-71.
[6] 刘文广,李建民,刘凯红,杨志平,李昕 . 定制肿瘤人工髋关节假体断裂三维有限元分析及套接式翻修假体的初步应用[J]. 山东大学学报(医学版), 2008, 46(4): 430-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!