山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 134-140.doi: 10.6040/j.issn.1671-7554.0.2020.1018
• 临床医学 • 上一篇
朱超,孙超,刘绪昌,夏大伟,马春骋,丰荣杰
ZHU Chao, SUN Chao, LIU Xuchang, XIA Dawei, MA Chuncheng, FENG Rongjie
摘要: 目的 探讨3D打印椎间融合器应用于单节段腰椎后路减压植骨融合内固定术后的优势和早期临床疗效。 方法 回顾性分析2021年5月至2022年1月于山东第一医科大学附属省立医院脊柱外科行单节段腰椎后路减压植骨融合内固定术患者73例,分为3D打印钛合金椎间融合器(3D cage)组(n=37)和聚醚醚酮椎间融合器(PEEK cage)组(n=36)。分别观察两组患者术前及术后随访的疼痛视觉模拟评分(VAS评分)和Oswestry功能障碍指数(ODI评分),评估腰椎功能及术后改善程度,比较两组患者骨密度(BMD)、手术时间、术中出血量、术中同种异体骨植入量、术后引流量、短期并发症发生情况、腰椎前凸角(LL)、椎间隙高度(DH)、LL丢失值、DH丢失值及椎间融合情况等数据。 结果 所有患者均顺利完成手术,术后随访3个月。两组患者手术时间、术中出血量、术后引流量及术后3个月VAS评分和 ODI评分比较,差异均无统计学意义(P>0.05);3D cage组同种异体骨植入量少于PEEK cage组,差异有统计学意义(P<0.05);术后两组患者的LL和DH均较术前增大,差异有统计学意义(P<0.05);两组患者术后3个月LL丢失值和DH丢失值差异均无统计学意义(P>0.05),但对于合并骨质疏松的患者,3D cage组LL丢失值和DH丢失值较PEEK cage组小,差异有统计学意义(P<0.05)。术后3个月3D cage组和PEEK cage组的融合率分别为72.97%和69.44%,差异无统计学意义(P>0.05)。两组患者在术后随访期间均未出现内固定物断裂、松动、移位等情况。 结论 在单节段腰椎固定融合术中使用3D打印椎间融合器具有较好的融合效果,可恢复并维持腰椎矢状位前凸角和椎间高度。尤其是对于合并骨质疏松的患者,3D cage具有良好的抗沉降性,降低椎体塌陷风险,提高腰椎机械结构的整体稳定性。
中图分类号:
[1] 赵廷潇, 张骏, 周乾坤,等. 加速康复外科在内镜辅助腰椎融合术中的应用研究[J]. 中华骨与关节外科杂志, 2020, 13(9): 712-718. ZHAO Tingxiao, ZHANG Jun, ZHOU Qiankun, et al. Application of enhanced recovery after surgery for percutaneous transforaminal endoscope-assisted lumbar interbody fusion[J]. Chinese Journal Bone and Joint Surgery, 2020, 13(9): 712-718. [2] Mobbs RJ, Phan K, Malham G, et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF[J]. J Spine Surg, 2015,1(1): 2-18. [3] 陈政宇, 童洁, 李学林, 等. 椎间植入材料在腰椎融合治疗中应用的优势及不足[J]. 中国组织工程研究, 2022, 26(10): 1597-1603. CHEN Zhengyu, TONG Jie, LI Xuelin, et al. Advantages and disadvantages of interbody implant materials in lumbar fusion[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(10): 1597-1603. [4] 毛誉蓉, 孙佳敏, 周雄, 等. 医用特种高分子聚醚醚酮植入体及其表面界面工程[J]. 功能高分子学报, 2021, 34(2): 144-160. MAO Yurong, SUN Jiamin, ZHOU Xiong, et al. Medical speciality polymer polyether ether ketone implant and its surface interface engineering[J]. Journal of Functional Polymers, 2021, 34(2): 144-160. [5] 中华医学会骨科学分会脊柱外科学组, 中华医学会骨科学分会骨科康复学组. 腰椎间盘突出症诊疗指南[J]. 中华骨科杂志, 2020, 40(8): 477-487. Spine Surgery Group of Orthopedic Branch of Chinese Medical Association, Orthopedic Rehabilitation Group of Orthopedic Branch of Chinese Medical Association. Clinical practice guideline for diagnosis and treatment of lumbar disc herniation[J]. Chinese Journal of Orthopaedics, 2020, 40(8): 477-487. [6] Matz PG, Meagher RJ, Lamer T, et al. Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis[J]. Spine J, 2016, 16(3): 439-448. [7] Kreiner DS, Shaffer WO, Baisden JL, et al. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis(update)[J]. Spine J, 2013, 13(7): 734-743. [8] 《中国定量CT(QCT)骨质疏松症诊断指南》工作组, 程晓光, 王亮, 等. 中国定量CT(QCT)骨质疏松症诊断指南(2018)[J]. 中国骨质疏松杂志, 2019, 25(6): 733-737. The committee for the China guideline for the diagnosis criteria of osteoporosis with quantitative computed tomography, CHENG Xiaoguang, WANG Liang, et al. The China guideline for the diagnosis criteria of osteoporosis with quantitative computed tomography(QCT)(2018)[J]. Chinese Journal of Osteoporosis, 2019, 25(6): 733-737. [9] Campbell PG, Cavanaugh DA, Nunley P, et al. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence[J]. Neurosurg Focus, 2020, 49(3): E10. doi:10.3171/2020.6.focus20367. [10] Makino T, Takaneka S, Sakai Y, et al. Impact of mechanical stability on the progress of bone on growth on the frame surfaces of a titanium-coated PEEK cage and a 3D porous titanium alloy cage: in vivo analysis using CT color mapping[J]. Eur Spine J, 2021, 30(5): 1303-1313. [11] Van Horn MR, Beard R, Wang W, et al. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model[J]. Spine J, 2021, 21(12): 2097-2103. [12] Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes[J]. ACS Omega, 2020, 5(41): 26655-26666. [13] Makino T, Takenaka S, Sakai Y, et al. Comparison of short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3D porous titanium alloy cage and a titanium-coated PEEK cage[J]. Global Spine J, 2022, 12(5): 931-939. [14] Li P, Jiang W, Yan J, et al. A novel 3D printed cage with microporous structure and in vivo fusion function[J]. J Biomed Mater Res A, 2019, 107(7): 1386-1392. [15] Wu SH, Li Y, Zhang YQ, et al. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion[J]. Artif Organs, 2013, 37(12): E191-E201. [16] Adl Amini D, Okano I, Oezel L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone(PEEK)cage[J]. Eur Spine J, 2021, 30(8): 2377-2384. [17] Phan K, Hogan JA, Assem Y, et al. PEEK-Halo effect in interbody fusion[J]. J Clin Neurosci, 2016, 24: 138-140. doi: 10.1016/j.jocn.2015.07.017. [18] Assem Y, Mobbs RJ, Pelletier MH, et al. Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic review and preclinical evaluation[J]. Eur Spine J, 2017, 26(3): 593-605. [19] Adl Amini D, Moser M, Oezel L, et al. Early outcomes of three-dimensional-printed porous titanium versus polyetheretherketone cage implantation for stand-alone lateral lumbar interbody fusion in the treatment of symptomatic adjacent segment degeneration[J]. World Neurosurg, 2022, 162: e14-e20. doi: 10.1016/j.wneu.2021.11.122. [20] Moraschini V, de Almeida DCF, Calasans-Maia MD, et al. Immunological response of allogeneic bone grafting: a systematic review of prospective studies[J]. J Oral Pathol Med, 2020, 49(5): 395-403. [21] Trindade R, Albrektsson T, Galli S, et al. Osseointegration and foreign body reaction: titanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation[J]. Clin Implant Dent Relat Res, 2018, 20(1): 82-91. [22] 刘正蓬, 王雅辉, 张义龙, 等. 3D打印椎间融合器置入治疗脊髓型颈椎病:颈椎曲度及椎间高度恢复的半年随访[J]. 中国组织工程研究, 2021, 25(6): 849-853. LIU Zhengpeng, WANG Yahui, ZHANG Yilong, et al. Application of 3D printed interbody fusion cage for cervical spondylosis of spinal cord type: half-year follow-up of recovery of cervical curvature and intervertebral height[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 849-853. [23] Arabnejad S, Burnett Johnston R, Pura JA, et al. High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints[J]. Acta Biomater, 2016, 30: 345-356. doi: 10.1016/j.actbio.2015.10.048. [24] Long EG, Buluk M, Gallagher MB, et al. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium[J]. Bioact Mater, 2019, 4: 249-255. doi: 10.1016/j.bioactmat.2019.08.001. [25] Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone[J]. Spine J, 2012, 12(3): 265-272. [26] Banik BL, Riley TR, Platt CJ, et al. Human mesenchymal stem cell morphology and migration on microtextured titanium[J]. Front Bioeng Biotechnol, 2016, 4: 41. doi: 10.3389/fbioe.2016.00041. [27] Ragni E, Perucca Orfei C, Bidossi A, et al. Superior osteo-inductive and osteo-conductive properties of trabecular titanium vs. PEEK scaffolds on human mesenchymal stem cells: a proof of concept for the use of fusion cages[J]. Int J Mol Sci, 2021, 22(5): 2379. doi:10.3390/ijms22052379. [28] Wei R, Wu J, Li Y. Macrophage polarization following three-dimensional porous PEEK[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109948. doi: 10.1016/j.msec.2019.109948. [29] Olivares-Navarrete R, Hyzy SL, Slosar PJ, et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors[J]. Spine(Phila Pa 1976), 2015, 40(6): 399-404. |
[1] | 陈诗鸿,姜冬青,庄向华,李晓博,潘喆,孙爱丽,娄能俊,王殿辉,杜娇娇,宋玉文. 以骨痛为首发表现的原发性胆汁性胆管炎1例[J]. 山东大学学报 (医学版), 2022, 60(8): 98-102. |
[2] | 陈诗鸿. 糖皮质激素性骨质疏松症研究进展[J]. 山东大学学报 (医学版), 2021, 59(6): 33-37. |
[3] | 邢小平. 原发性骨质疏松症诊治思考[J]. 山东大学学报 (医学版), 2021, 59(6): 1-4. |
[4] | 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56. |
[5] | 康成为,刘雷,蒲小兵,谭钢,董长超,晏兆魁. 合并亚临床型甲状腺功能减退的骨质疏松症62例患者骨代谢及骨转换标志物水平分析[J]. 山东大学学报 (医学版), 2020, 58(5): 82-86. |
[6] | 陈辰,张凯,张锋,赵杰. 健康成人腰椎椎间隙高度的解剖学分型及临床意义[J]. 山东大学学报 (医学版), 2019, 57(5): 43-47. |
[7] | 徐大霞,侯楠,李晓峰,王闯,孔猛,焦广俊,陈允震. 糖皮质激素性骨质疏松症骨代谢与糖皮质激素用药时间的相关性[J]. 山东大学学报(医学版), 2017, 55(5): 103-107. |
[8] | 张丽, 严红. 2型糖尿病患者骨质疏松情况调查[J]. 山东大学学报(医学版), 2014, 52(S2): 107-107. |
[9] | 胡苏1,2,逄曙光2,崔莹2,于春晓1,赵家军1,管庆波1. 链脲佐菌素诱导糖尿病大鼠骨髓间充质干细胞成骨分化[J]. 山东大学学报(医学版), 2013, 51(8): 7-12. |
[10] | 丁岩,陈允震,刘海春,陈剑,赵华,王洪亮,焦广俊. 指数曲线电刺激治疗原发性骨质疏松[J]. 山东大学学报(医学版), 2010, 48(3): 70-73. |
|