您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 127-133.doi: 10.6040/j.issn.1671-7554.0.2022.1328

• 临床医学 • 上一篇    

人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用

王辉1,王连雷1,吴天驰2,田永昊1,原所茂1,王霞1,吕维加2,刘新宇1   

  1. 1.山东大学齐鲁医院脊柱外科, 山东 济南 250012;2.香港大学骨科与创伤科, 中国 香港 999077
  • 发布日期:2023-03-24
  • 通讯作者: 刘新宇. E-mail:newyuliu@163.com
  • 基金资助:
    国家自然科学基金(81874022,82172483,82102522);山东省自然科学基金(ZR202102210113);泰山学者工程专项经费资助(tsqn202211317)

Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries

WANG Hui1, WANG Lianlei1, WU Tianchi2, TIAN Yonghao1, YUAN Suomao1, WANG Xia1, LYU Weijia2, LIU Xinyu1   

  1. 1. Department of Spinal Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
  • Published:2023-03-24

摘要: 目的 分析人工智能辅助设计3D打印导板在脊柱侧凸矫形手术中的应用价值。 方法 回顾性分析2018年6月至2022年9月接受脊柱侧凸矫形手术患者66例的临床资料。采用人工智能辅助设计3D打印导板置入椎弓根螺钉患者24例(智能导板组),其中先天性脊柱侧凸10例,特发性脊柱侧凸8例,退变性脊柱侧凸6例。且均在术前应用SurigiPlan V1.0辅助规划螺钉型号及路径。42例采用徒手置入椎弓根螺钉(徒手组),其中先天性脊柱侧凸16例,特发性脊柱侧凸13例,退变性脊柱侧凸13例。对比两组住院时间、手术时间、术中出血量、术中辐射量、术后椎弓根螺钉置入的准确率和安全性、术前规划与实际置入应用螺钉的符合率以及治疗前后脊柱影像学参数变化。 结果 两组共置入1 342枚椎弓根螺钉,其中智能导板组与徒手组分别置入468枚和874枚螺钉。智能导板组置钉安全性高于徒手组(98.29% vs 92.33%,P<0.05),置钉准确性高于徒手组(94.23% vs 82.95%,P<0.05)。智能导板组468枚螺钉中,术前规划螺钉的长度及直径与实际应用螺钉的符合率分别为97.01%(454枚)和95.51%(447枚)。两组术前及术后主弯的Cobb角及顶椎旋转角、手术时间、出血量等指标差异无统计学意义(P>0.05)。智能导板组患者的术中辐射剂量低于徒手组(P<0.05),两组医生的术中辐射剂量差异无统计学意义(P>0.05)。 结论 与徒手置钉相比,人工智能辅助设计制造的3D打印手术导板可显著提高置钉准确性、安全性及置钉效率。

关键词: 脊柱畸形, 3D打印, 人工智能, 手术导板, 椎弓根螺钉

Abstract: Objective To assess the value of artificial intelligence-assisted 3D printing surgical guides in scoliosis surgeries. Methods The clinical data of 66 patients who underwent scoliosis orthopedic surgery during Jun. 2018 and Sep. 2022 were retrospectively analyzed. Artificial intelligence-assisted design of 3D printed guides for pedicle screws were placed in 24 cases(intelligent guide group), including 10 cases of congenital scoliosis, 8 cases of idiopathic scoliosis, and 6 cases of degenerative scoliosis, and all patients used SurigiPlan V1.0 to assist in the preoperative planning of the screw type and path. Freehand pedicle screws were placed in 42 cases(freehand group), including 16 cases of congenital scoliosis, 13 cases of idiopathic scoliosis, and 13 cases of degenerative scoliosis. The postoperative stay, operation time, intraoperative bleeding, intraoperative radiation, accuracy and safety of postoperative pedicle screw placement, compliance between preoperative planning and actual placement of screws, and changes in pre- and postoperative imaging spine parameters were compared between the two groups. Results A total of 1,342 pedicle screws were placed, including 468 in the intelligent guide group and 874 in the freehand group. The intelligent guide group had a higher safety than the freehand group(98.29% vs 92.33%, P<0.05)and a higher accuracy(94.23% vs 82.95%, P<0.05). Of the 468 screws in the intelligent guide group, the preoperative planning of screw length and diameter matched the actual application of screws by 97.01%(454 screws)and 95.51%(447 screws)respectively. There were no statistically significant differences in the Cobb angle, apical vertebral rotation, operation time and bleeding between the two groups before and after operation(P>0.05). The intraoperative radiation dose of patients in the intelligent guide group was lower than that in the freehand group(P<0.05), but there was no statistically significant difference in the intraoperative radiation dose of surgeons(P>0.05). Conclusion Compared to freehand screws placement, the artificial intelligence-assisted 3D printing of surgical guides can significantly improve the accuracy, safety and efficiency of screws placement.

Key words: Scoliosis, 3D-printed, Artificial intelligence, Assistant surgical guides, Pedicle screws

中图分类号: 

  • R681.5
[1] Hicks JM, Singla A, Shen FH, et al. Complications of pedicle screw fixation in scoliosis surgery: a systematic review[J]. Spine(Phila Pa 1976), 2010, 35(11): E465-E470.
[2] Foxx KC, Kwak RC, Latzman JM, et al. A retrospective analysis of pedicle screws in contact with the great vessels[J]. J Neurosurg Spine, 2010, 13(3): 403-406.
[3] Soultanis KC, Sakellariou VI, Starantzis KA, et al. Late diagnosis of perforation of the aorta by a pedicle screw[J]. Acta Orthop Belg, 2013, 79(4): 361-367.
[4] 陈豪杰, 朱贤友, 董亮, 等. 青少年特发性脊柱侧弯矫形术中机器人辅助植钉的研究[J]. 中国修复重建外科杂志, 2021, 35(11): 1457-1462. CHEN Haojie, ZHU Xianyou, DONG Liang, et al. Study on robot-assisted pedicle screw implantation in adolescent idiopathic scoliosis surgery[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(11): 1457-1462.
[5] Fujita R, Oda I, Takeuchi H, et al. Accuracy of pedicle screw placement using patient-specific template guide system[J]. J Orthop Sci, 2022, 27(2): 348-354.
[6] Larson AN, Polly DW, Guidera KJ, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity[J]. J Pediatr Orthop, 2012, 32(6): e9-23.
[7] Manbachi A, Cobbold RS, Ginsberg HJ. Guided pedicle screw insertion: techniques and training[J]. Spine J, 2014, 14(1): 165-179.
[8] Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery[J]. Neurosurg Focus, 2017, 42(5): E14.
[9] Sugawara T, Higashiyama N, Kaneyama S, et al. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation[J]. Spine(Phila Pa 1976), 2017, 42(6): 340-346.
[10] 田野, 张嘉男, 樊勇, 等. 3D打印导航模板与计算机导航辅助置入C2椎弓根和侧块螺钉的对比研究[J]. 实用骨科杂志, 2019, 25(7): 581-587. TIAN Ye, ZHANG Jianan, FAN Yong, et al. A comparative study of 3D printing navigation template and computer navigation-assisted C2 pedicle and pars screws placement[J]. Journal of Practical Orthopaedics, 2019, 25(7): 581-587.
[11] Joshi RS, Lau D, Ames CP. Artificial intelligence for adult spinal deformity: current state and future directions[J]. Spine J, 2021, 21(10): 1626-1634.
[12] Rasouli JJ, Shao J, Neifert S, et al. Artificial intelligence and robotics in spine surgery[J]. Global Spine J, 2021, 11(4): 556-564.
[13] Ma C, Zou D, Qi H, et al. A novel surgical planning system using an AI model to optimize planning of pedicle screw trajectories with highest bone mineral density and strongest pull-out force[J]. Neurosurg Focus, 2022, 52(4): E10.
[14] Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo[J]. Spine(Phila Pa 1976), 1990, 15(1): 11-14.
[15] Mason A, Paulsen R, Babuska JM, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems[J]. J Neurosurg Spine, 2014, 20(2): 196-203.
[16] Benzakour A, Altsitzioglou P, Lemée JM, et al. Artificial intelligence in spine surgery[J]. Int Orthop, 2023, 47(2): 457-465.
[17] Joshi RS, Lau D, Ames CP. Artificial intelligence and the future of spine surgery[J]. Neurospine, 2019, 16(4): 637-639.
[18] Gautschi OP, Schatlo B, Schaller K, et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35, 630 pedicle screws[J]. Neurosurg Focus, 2011, 31(4): E8.
[19] Charles YP, Lamas V, Ntilikina Y. Artificial intelligence and treatment algorithms in spine surgery[J]. Orthop Traumatol Surg Res, 2023, 109(1s): 103456.
[20] Tong Y, Kaplan DJ, Spivak JM, et al. Three-dimensional printing in spine surgery: a review of current applications[J]. Spine J, 2020, 20(6): 833-846.
[21] Riis J, Lehman RR, Perera RA, et al. A retrospective comparison of intraoperative CT and fluoroscopy evaluating radiation exposure in posterior spinal fusions for scoliosis[J]. Patient Saf Surg, 2017, 11: 32. doi: 10.1186/s13037-017-0142-0.
[22] Lee K, Lee KM, Park MS, et al. Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy[J]. Spine(Phila Pa 1976), 2012, 37(14): 1240-1244.
[23] Mariscalco MW, Yamashita T, Steinmetz MP, et al. Radiation exposure to the surgeon during open lumbar microdiscectomy and minimally invasive microdiscectomy: a prospective, controlled trial[J]. Spine(Phila Pa 1976), 2011, 36(3): 255-260.
[24] Mulconrey DS. Fluoroscopic radiation exposure in spinal surgery: in vivo evaluation for operating room personnel[J]. Clin Spine Surg, 2016, 29(7): E331-E335.
[25] Wang H, Zhang Z, Qiu G, et al. Risk factors of perioperative complications for posterior spinal fusion in degenerative scoliosis patients: a retrospective study[J]. BMC Musculoskelet Disord, 2018, 19(1): 242.
[26] Diab M, Smith AR, Kuklo TR, et al. Neural complications in the surgical treatment of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2007, 32(24): 2759-2763.
[27] Buell TJ, Smith JS, Shaffrey CI, et al. Operative treatment of severe scoliosis in symptomatic adults: multicenter assessment of outcomes and complications with minimum 2-year follow-up[J]. Neurosurgery, 2021, 89(6): 1012-1026.
[28] Chen X, Gao X, Zheng F, et al. Feasibility analysis of 3D printing-assisted pedicle screw correction surgery for degenerative scoliosis[J]. Evid Based Complement Alternat Med, 2022, 2022: 4069778. doi: 10.1155/2022/4069778.
[29] Vissarionov SV, Kokushin DN, Khusainov NO, et al. Comparing the treatment of congenital spine deformity using freehand techniques in vivo and 3D-printed templates in vitro(prospective-retrospective single-center analytical single-cohort study)[J]. Adv Ther, 2020, 37(1): 402-419.
[1] 刘新宇,李冬来,赵文龙,王政,李超,王连雷,原所茂,田永昊. 机器人/导航辅助下椎弓根螺钉植入在脊柱畸形矫正中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 21-28.
[2] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[3] 李超,孙小刚,李昊,田永昊,原所茂,刘新宇,王连雷. 机器人联合三维“C”型臂辅助置钉在44例脊柱侧弯矫形术中的应用价值[J]. 山东大学学报 (医学版), 2023, 61(3): 107-114.
[4] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[5] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[6] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[7] 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106.
[8] 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96.
[9] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21.
[10] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73.
[11] 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4.
[12] 黄平,商红国. 数字化种植导板在下颌后牙区连续多牙缺失下的临床应用[J]. 山东大学学报 (医学版), 2020, 58(2): 60-63.
[13] 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23.
[14] 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44.
[15] CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!