您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 85-90.doi: 10.6040/j.issn.1671-7554.0.2022.0368

• 基础医学 • 上一篇    下一篇

GPCR-G蛋白融合传感器检测GPCR与G蛋白相互作用的灵敏度

马传顺1,2,林慧2,孙金鹏1,2,张道来1   

  1. 1.滨州医学院药学院, 山东 烟台 264003;2.山东大学基础医学院, 山东 济南 250012
  • 发布日期:2022-09-02
  • 通讯作者: 张道来. E-mail:dlzhang@bzmc.edu.cn孙金鹏. E-mail:sunjinpeng@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81773704,81901548);国家杰出青年科学基金(81825022);山东省自然科学基金(ZR2019BC078)

Sensitivity of GPCR-G protein fusion sensor to detect the interaction between GPCR and G protein

MA Chuanshun1,2, LIN Hui2, SUN Jinpeng1,2, ZHANG Daolai1   

  1. 1. School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China;
    2. Department of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-02

摘要: 目的 以GPR56-G 蛋白融合传感器为例,建立一种检测 GPCR 与 G 蛋白相互作用的高灵敏方法。 方法 将带有 NanoLuc 荧光素酶(Nluc)的G蛋白α亚基的 N 端融合到 GPCR 的 C 端,构建 GPCR 和G蛋白 α 亚基两者的融合蛋白为实验组,受体和G蛋白共表达作为对照组。在受体表达水平相同的条件下,利用生物发光共振能量转移(BRET)方法检测GPR56-Gα12亚基融合蛋白、GPR56 和 Gα12亚基共表达的组成性活力。利用BRET方法检测GPR56激动剂(P19)对 GPR56-Gα12亚基融合蛋白相互作用的影响。 结果 BRET 比率结果显示,与对照组 GPR56 和 Gα12亚基共表达相比,GPR56-Gα12亚基融合蛋白具有更强的组成性活力(F=424.7,P<0.001);与对照组比较,P19激活实验组的半数有效浓度(EC50)下降,差异有统计学意义(t=13.36,P<0.001),GPR56-Gα12亚基融合蛋白对激动剂(P19)的感知更灵敏,亲和力更强。 结论 GPCR-Gα 亚基融合蛋白系统是一种检测GPCR与G蛋白相互作用更灵敏的方法。

关键词: GPCR-Gα 亚基融合蛋白, GPR56, 12, 组成性活力, P19

Abstract: Objective GPR56-G protein fusion sensor was used as a prototype to establish a highly sensitive method to detect the interaction between GPCR and G protein. Methods The N-terminus of the G protein α subunit with NanoLuc luciferase(Nluc)was fused to the C-terminus of the GPCR. The fusion protein of both GPCR and G protein α subunit was constructed as the experimental group, and the receptor and G protein were co-expressed as a control group. The constitutive activity of GPR56-Gα12 subunit fusion protein, GPR56 and Gα12 subunit co-expression were compared with bioluminescence resonance energy transfer(BRET)at the same level of receptor expression. The effect of agonist(P19)on the interaction of GPR56-Gα12 subunit fusion protein was detected with BRET. Results The BRET ratio results showed that the GPR56-Gα12 subunit fusion protein had stronger constitutive activity than the control group co-expressed with GPR56 and Gα12 subunits(F=424.7, P<0.001). Compared with the control group, the experimental group had decreased half effective concentration(EC50)of P19 activation (t=13.36, P<0.001). The GPR56-Gα12 subunit fusion protein was more sensitive to P19 and had a stronger affinity. Conclusion The GPCR-Gα subunit fusion protein system is a sensitive method to detect the interaction between GPCRs and G protein.

Key words: GPCR-Gα subunit fusion protein, GPR56, 12, Constitutive activity, P19

中图分类号: 

  • Q5-33
[1] Qin K, Dong C, Wu G, et al. Inactive-state preassembly of G(q)-coupled receptors and G(q)heterotrimers[J]. Nat Chem Biol, 2011, 7(10): 740-747.
[2] Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors[J]. Nat Rev Drug Discov, 2018, 17(4): 243-260.
[3] Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets[J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.
[4] Hauser AS, Chavali S, Masuho I, et al. Pharmacogenomics of GPCR drug targets[J]. Cell, 2018, 172(1-2): 41-54 e19.
[5] Cheng J, Yang Z, Ge XY, et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism[J]. Cell Metab, 2022, 34(2): 240-255. e10.
[6] Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus—progress and challenges[J]. Nat Rev Endocrinol, 2021, 17(3): 162-175.
[7] Bjarnadottir TK, Fredriksson R, Hoglund PJ, et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors[J]. Genomics, 2004, 84(1): 23-33.
[8] Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer[J]. Nat Rev Cancer, 2007, 7(2): 79-94.
[9] Gales C, Rebois RV, Hogue M, et al. Real-time monitoring of receptor and G-protein interactions in living cells[J]. Nat Methods, 2005, 2(3): 177-184.
[10] Gales C, Van Durm JJ, Schaak S, et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes[J]. Nat Struct Mol Biol, 2006, 13(9): 778-786.
[11] Hein P, Frank M, Hoffmann C, et al. Dynamics of receptor/G protein coupling in living cells[J]. EMBO J, 2005, 24(23): 4106-4114.
[12] Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling[J]. Pharmacol Rev, 2012, 64(2): 299-336.
[13] Sriram K, Insel PA. G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?[J]. Mol Pharmacol, 2018, 93(4): 251-258.
[14] Civelli O, Reinscheid RK, Zhang Y, et al. G protein-coupled receptor deorphanizations[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 127-146. doi: 10.1146/annurev-pharmtox-010611-134548.
[15] Milligan G, Parenty G, Stoddart LA, et al. Novel pharmacological applications of G-protein-coupled receptor-G protein fusions[J]. Curr Opin Pharmacol, 2007, 7(5): 521-526.
[16] Bahia DS, Wise A, Fanelli F, et al. Hydrophobicity of residue351 of the G protein Gi1 alpha determines the extent of activation by the alpha 2A-adrenoceptor[J]. Biochemistry, 1998, 37(33): 11555-11562.
[17] Wise A, Sheehan M, Rees S, et al. Comparative analysis of the efficacy of A1 adenosine receptor activation of Gi/o alpha G proteins following coexpression of receptor and G protein and expression of A1 adenosine receptor-Gi/o alpha fusion proteins[J]. Biochemistry, 1999, 38(8): 2272-2278.
[18] Wan Q, Okashah N, Inoue A, et al. Mini G protein probes for active G protein-coupled receptors(GPCRs)in live cells[J]. J Biol Chem, 2018, 293(19): 7466-7473.
[19] Janetopoulos C, Jin T, Devreotes P. Receptor-mediated activation of heterotrimeric G-proteins in living cells[J]. Science, 2001, 291(5512): 2408-2411.
[20] Xerri L, Mathoulin MP, Birg F, et al. Heterogeneity of rearranged T-cell receptor V-alpha and V-beta transcripts in tumor-infiltrating lymphocytes from Hodgkins disease and non-Hodgkins lymphoma[J]. Am J Clin Pathol, 1994, 101(1): 76-80.
[21] Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors[J]. Br J Pharmacol, 1998, 125(5): 924-947.
[22] Paavola KJ, Stephenson JR, Ritter SL, et al. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity[J]. J Biol Chem, 2011, 286(33): 28914-28921.
[23] Azimzadeh P, Talamantez-Lyburn SC, Chang KT, et al. Spatial regulation of GPR64/ADGRG2 signaling by beta-arrestins and GPCR kinases[J]. Ann N Y Acad Sci, 2019, 1456(1): 26-43.
[24] Kishore A, Purcell RH, Nassiri-Toosi Z, et al. Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56(ADGRG1)and BAI1(ADGRB1)[J]. J Biol Chem, 2016, 291(7): 3385-3394.
[25] 郭芮伶. 粘附受体GPR56与肿瘤[J]. 中华肺部疾病杂志(电子版), 2015, 8(4): 482-484.
[26] Xiao P, Guo S, Wen X, et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4[J]. Nature, 2022, 604(7907): 771-778.
[27] Ping YQ, Xiao P, Yang F, et al. Structural basis for the tethered peptide activation of adhesion GPCRs[J]. Nature, 2022, 604(7907): 763-770.
[28] Qu X, Qiu N, Wang M, et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1[J]. Nature, 2022, 604(7907): 779-785.
[1] 周剑,赵晗婷,吕刚,王琳,李启航,朱美艳,王志林,何深一. 弓形虫ROP19蛋白生物信息学分析及真核表达载体的构建[J]. 山东大学学报(医学版), 2017, 55(3): 64-69.
[2] . P19细胞分化过程中激活型bHLH基因的表达[J]. 山东大学学报(医学版), 2009, 47(10): 19-22.
Viewed
Full text
147
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 147

  From Others local
  Times 18 129
  Rate 12% 88%

Abstract
739
Just accepted Online first Issue
0 0 739
  From Others local
  Times 738 1
  Rate 100% 0%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .