山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 85-90.doi: 10.6040/j.issn.1671-7554.0.2022.0368
马传顺1,2,林慧2,孙金鹏1,2,张道来1
MA Chuanshun1,2, LIN Hui2, SUN Jinpeng1,2, ZHANG Daolai1
摘要: 目的 以GPR56-G 蛋白融合传感器为例,建立一种检测 GPCR 与 G 蛋白相互作用的高灵敏方法。 方法 将带有 NanoLuc 荧光素酶(Nluc)的G蛋白α亚基的 N 端融合到 GPCR 的 C 端,构建 GPCR 和G蛋白 α 亚基两者的融合蛋白为实验组,受体和G蛋白共表达作为对照组。在受体表达水平相同的条件下,利用生物发光共振能量转移(BRET)方法检测GPR56-Gα12亚基融合蛋白、GPR56 和 Gα12亚基共表达的组成性活力。利用BRET方法检测GPR56激动剂(P19)对 GPR56-Gα12亚基融合蛋白相互作用的影响。 结果 BRET 比率结果显示,与对照组 GPR56 和 Gα12亚基共表达相比,GPR56-Gα12亚基融合蛋白具有更强的组成性活力(F=424.7,P<0.001);与对照组比较,P19激活实验组的半数有效浓度(EC50)下降,差异有统计学意义(t=13.36,P<0.001),GPR56-Gα12亚基融合蛋白对激动剂(P19)的感知更灵敏,亲和力更强。 结论 GPCR-Gα 亚基融合蛋白系统是一种检测GPCR与G蛋白相互作用更灵敏的方法。
中图分类号:
[1] Qin K, Dong C, Wu G, et al. Inactive-state preassembly of G(q)-coupled receptors and G(q)heterotrimers[J]. Nat Chem Biol, 2011, 7(10): 740-747. [2] Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors[J]. Nat Rev Drug Discov, 2018, 17(4): 243-260. [3] Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets[J]. Nat Rev Drug Discov, 2017, 16(1): 19-34. [4] Hauser AS, Chavali S, Masuho I, et al. Pharmacogenomics of GPCR drug targets[J]. Cell, 2018, 172(1-2): 41-54 e19. [5] Cheng J, Yang Z, Ge XY, et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism[J]. Cell Metab, 2022, 34(2): 240-255. e10. [6] Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus—progress and challenges[J]. Nat Rev Endocrinol, 2021, 17(3): 162-175. [7] Bjarnadottir TK, Fredriksson R, Hoglund PJ, et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors[J]. Genomics, 2004, 84(1): 23-33. [8] Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer[J]. Nat Rev Cancer, 2007, 7(2): 79-94. [9] Gales C, Rebois RV, Hogue M, et al. Real-time monitoring of receptor and G-protein interactions in living cells[J]. Nat Methods, 2005, 2(3): 177-184. [10] Gales C, Van Durm JJ, Schaak S, et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes[J]. Nat Struct Mol Biol, 2006, 13(9): 778-786. [11] Hein P, Frank M, Hoffmann C, et al. Dynamics of receptor/G protein coupling in living cells[J]. EMBO J, 2005, 24(23): 4106-4114. [12] Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling[J]. Pharmacol Rev, 2012, 64(2): 299-336. [13] Sriram K, Insel PA. G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?[J]. Mol Pharmacol, 2018, 93(4): 251-258. [14] Civelli O, Reinscheid RK, Zhang Y, et al. G protein-coupled receptor deorphanizations[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 127-146. doi: 10.1146/annurev-pharmtox-010611-134548. [15] Milligan G, Parenty G, Stoddart LA, et al. Novel pharmacological applications of G-protein-coupled receptor-G protein fusions[J]. Curr Opin Pharmacol, 2007, 7(5): 521-526. [16] Bahia DS, Wise A, Fanelli F, et al. Hydrophobicity of residue351 of the G protein Gi1 alpha determines the extent of activation by the alpha 2A-adrenoceptor[J]. Biochemistry, 1998, 37(33): 11555-11562. [17] Wise A, Sheehan M, Rees S, et al. Comparative analysis of the efficacy of A1 adenosine receptor activation of Gi/o alpha G proteins following coexpression of receptor and G protein and expression of A1 adenosine receptor-Gi/o alpha fusion proteins[J]. Biochemistry, 1999, 38(8): 2272-2278. [18] Wan Q, Okashah N, Inoue A, et al. Mini G protein probes for active G protein-coupled receptors(GPCRs)in live cells[J]. J Biol Chem, 2018, 293(19): 7466-7473. [19] Janetopoulos C, Jin T, Devreotes P. Receptor-mediated activation of heterotrimeric G-proteins in living cells[J]. Science, 2001, 291(5512): 2408-2411. [20] Xerri L, Mathoulin MP, Birg F, et al. Heterogeneity of rearranged T-cell receptor V-alpha and V-beta transcripts in tumor-infiltrating lymphocytes from Hodgkins disease and non-Hodgkins lymphoma[J]. Am J Clin Pathol, 1994, 101(1): 76-80. [21] Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors[J]. Br J Pharmacol, 1998, 125(5): 924-947. [22] Paavola KJ, Stephenson JR, Ritter SL, et al. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity[J]. J Biol Chem, 2011, 286(33): 28914-28921. [23] Azimzadeh P, Talamantez-Lyburn SC, Chang KT, et al. Spatial regulation of GPR64/ADGRG2 signaling by beta-arrestins and GPCR kinases[J]. Ann N Y Acad Sci, 2019, 1456(1): 26-43. [24] Kishore A, Purcell RH, Nassiri-Toosi Z, et al. Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56(ADGRG1)and BAI1(ADGRB1)[J]. J Biol Chem, 2016, 291(7): 3385-3394. [25] 郭芮伶. 粘附受体GPR56与肿瘤[J]. 中华肺部疾病杂志(电子版), 2015, 8(4): 482-484. [26] Xiao P, Guo S, Wen X, et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4[J]. Nature, 2022, 604(7907): 771-778. [27] Ping YQ, Xiao P, Yang F, et al. Structural basis for the tethered peptide activation of adhesion GPCRs[J]. Nature, 2022, 604(7907): 763-770. [28] Qu X, Qiu N, Wang M, et al. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1[J]. Nature, 2022, 604(7907): 779-785. |
[1] | 周剑,赵晗婷,吕刚,王琳,李启航,朱美艳,王志林,何深一. 弓形虫ROP19蛋白生物信息学分析及真核表达载体的构建[J]. 山东大学学报(医学版), 2017, 55(3): 64-69. |
[2] | . P19细胞分化过程中激活型bHLH基因的表达[J]. 山东大学学报(医学版), 2009, 47(10): 19-22. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 739
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|