您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (10): 62-67.doi: 10.6040/j.issn.1671-7554.0.2022.0438

• 临床医学 • 上一篇    下一篇

71例腹主动脉瘤的基线CT特征与病变进展的相关性

王颖1,2,顾慧2,于鑫鑫1,胡锦卓2,王箬芃2,王锡明1,2   

  1. 1. 山东大学齐鲁医学院, 山东 济南 250012;2. 山东大学附属省立医院医学影像科, 山东 济南 250021
  • 发布日期:2022-09-30
  • 通讯作者: 王锡明. E-mail:wxming369@163.com
  • 基金资助:
    国家自然科学基金(81871354,81571672);国家自然科学基金委员会青年项目(81901740);山东省泰山学者专项经费;山东第一医科大学学术提升计划(2019QL023)

Correlation between baseline CT features and progression of abdominal aortic aneurysm in 71 cases

WANG Ying1,2, GU Hui2, YU Xinxin1, HU Jinzhuo2, WANG Ruopeng2, WANG Ximing1,2   

  1. 1. Shandong University, Jinan 250012, Shandong, China;
    2. Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
  • Published:2022-09-30

摘要: 目的 评估与腹主动脉瘤(AAA)进展相关的基线CT特征,为AAA的临床治疗路径提供参考。 方法 选取2012年1月至2021年12月至少行两次增强CT扫描的83例AAA患者的临床及影像资料进行分析,两次扫描间隔3个月以上。测量瘤体的直径、面积、长度、曲度、血栓面积等基线CT特征,并根据瘤体直径计算AAA的年进展速度。将有进展的AAA分为缓慢进展组(进展速度≤0.25 cm/y)和快速进展组(进展速度>0.25 cm/y)。采用独立样本t检验或Mann-Whitney U非参数检验进行组间比较;运用单变量与多变量线性回归分析,确定与AAA 进展有关的基线CT特征。 结果 71例患者存在病变进展,其中缓慢进展组35例,快速进展组36例。快速进展组的基线瘤体长度显著大于缓慢进展组(P=0.03)。多因素相关性分析结果显示,瘤体面积(β=0.048, P=0.020)、长度(β=0.051, P=0.007)与进展速度呈独立正相关,瘤体曲度(β=-0.005, P=0.034)、血栓面积(β=-0.034, P=0.013)与进展速度呈独立负相关。 结论 AAA患者基线CT特征中瘤体面积、长度、曲度、血栓面积与病变进展显著相关。

关键词: 腹主动脉瘤, 电子计算机断层扫描, 进展速度, 瘤体面积, 腔内血栓

Abstract: Objective To evaluate the baseline CT features associated with the progression of abdominal aortic aneurysm(AAA)so as to provide a reference for the clinical treatment of AAA. Methods Clinical and imaging data of 83 AAA patients who underwent at least two enhanced CT scans during Jan. 2012 and Dec. 2021 were selected for analysis, with an interval of 3 months or more between the two scans. Baseline CT features such as aneurysm diameter, area, length, curvature, and thrombus area were measured, and the annual rate of AAA progression was calculated based on the aneurysm diameter. Patients with progression were divided into slow progression group(progression rate ≤0.25 cm/y)and rapid progression group(progression rate >0.25 cm/y). Independent samples t-test or Mann-Whitney U nonparametric test was used for comparison between groups; univariate and multivariate linear regression analyses were applied to determine baseline CT characteristics associated with AAA progression. Results Progression was present in 71 patients, including 35 in the slow progression group and 36 in the rapid progression group. The baseline aneurysm length was significantly longer in the rapid progression group than in the slow progression group(P=0.03). Multivariate analysis showed that aneurysm area(β=0.048, P=0.020)and length(β=0.051, P=0.007)were independently and positively correlated with the rate of progression, and aneurysm curvature(β=-0.005, P=0.034)and thrombus area(β=-0.034, P=0.013)were independently and negatively correlated with the rate of progression. Conclusion Among the baseline CT features of AAA patients, aneurysm area, length, curvature, and thrombus area are significantly associated with progression.

Key words: Abdominal aortic aneurysm, Computed tomography, Growth rate, Aneurysm area, Intraluminal thrombus

中图分类号: 

  • R816.2
[1] Toczek J, Boodagh P, Sanzida N, et al. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm[J]. Theranostics, 2021, 11(12): 5876-5888.
[2] Sakalihasan N, Michel JB, Katsargyris A, et al. Abdominal aortic aneurysms[J]. Nat Rev Dis Primers, 2018, 4(1): 34. doi: 10.1038/s41572-018-0030-7.
[3] Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol, 2019, 16(4): 225-242.
[4] 吴建强, 王威, 郑月宏. 血管老化在腹主动脉瘤发病中的作用及潜在的治疗靶点[J]. 中国医学科学院学报, 2021, 43(6): 962-968. WU Jianqiang, WANG Wei, ZHENG Yuehong. Role of vascular aging in the pathogenesis of abdominal aortic aneurysm and potential therapeutic targets[J]. Acta Academiae Medicinae Sinicae, 2021, 43(6): 962-968.
[5] Chaikof EL, Dalman RL, Eskandari MK, et al. The society for vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm[J]. J Vasc Surg, 2018, 67(1): 2-77.
[6] Schanzer A, Oderich GS. Management of abdominal aortic aneurysms[J]. N Engl J Med, 2021, 385(18): 1690-1698.
[7] Boyd AJ. Biomechanical prediction of abdominal aortic aneurysm rupture potential[J]. J Vasc Surg, 2020, 71(2): 627. doi: 10.1016/j.jvs.2019.03.052.
[8] Chandrashekar A, Handa A, Lapolla P, et al. Prediction of abdominal aortic aneurysm growth using geometric assessment of computerised tomography images acquired during the aneurysm surveillance period[J]. Ann Surg, 2020, 29: 10. doi: 10.1097/SLA.0000000000004711.
[9] Zur G, Andraous M, Bercovich E, et al. CT-ultrasound fusion for abdominal aortic aneurysm measurement[J]. AJR Am J Roentgenol, 2020, 214(2): 472-476.
[10] Akkoyun E, Gharahi H, Kwon ST, et al. Defining a master curve of abdominal aortic aneurysm growth and its potential utility of clinical management[J]. Comput Methods Programs Biomed, 2021, 208: 106256. doi: 10.1016/j.cmpb.2021.106256.
[11] Zhu C, Leach JR, Wang Y, et al. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms[J]. Radiology, 2020, 294(3): 707-713.
[12] Olson SL, Wijesinha MA, Panthofer AM, et al. Evaluating growth patterns of abdominal aortic aneurysm diameter with serial computed tomography surveillance[J]. JAMA Surg, 2021, 156(4): 363-370.
[13] Panthofer AM, Olson SL, Rademacher BL, et al. Anatomic eligibility for endovascular aneurysm repair preserved over 2 years of surveillance[J]. J Vasc Surg, 2021, 74(5): 1527-1536.
[14] 张韬, 郭伟. 腹主动脉瘤诊断和治疗中国专家共识(2022版)[J].中国实用外科杂志, 2022, 42(4): 380-387. ZHANG Tao, GUO Wei. Chinese expert consensus on the diagnosis and treatment of abdominal aortic aneurysm(2022 edition)[J]. Chinese Journal of Practical Surgery, 2022, 42(4): 380-387.
[15] Nana P, Spanos K, Dakis K, et al. Imaging predictive factors of abdominal aortic aneurysm growth[J]. J Clin Med, 2021, 10(9): 1917. doi: 10.3390/jcm10091917.
[16] Doyle BJ, Bappoo N, Syed MBJ, et al. Biomechanical assessment predicts aneurysm related events in patients with abdominal aortic aneurysm[J]. Eur J Vasc Endovasc Surg, 2020, 60(3): 365-373.
[17] Martufi G, Lindquist LM, Sakalihasan N, et al. Local diameter, wall stress, and thrombus thickness influence the local growth of abdominal aortic aneurysms[J]. J Endovasc Ther, 2016, 23(6): 957-966.
[18] Polzer S, Gasser TC, Vlachovsky R, et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms[J]. J Vasc Surg, 2020, 71(2): 617-626.
[19] Lindquist LM, Hultgren R, Gasser TC, et al. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk[J]. J Vasc Surg, 2016, 63(6): 1434-1442.
[20] Hendy K, Gunnarson R, Golledge J. Growth rates of small abdominal aortic aneurysms assessed by computerised tomography-a systematic literature review[J]. Atherosclerosis, 2014, 235(1): 182-188.
[21] Spanos K, Nana P, Kouvelos G, et al. Anatomical differences between intact and ruptured large abdominal aortic aneurysms[J]. J Endovasc Ther, 2020, 27(1): 117-123.
[22] Olson SL, Panthofer AM, Blackwelder W, et al. Role of volume in small abdominal aortic aneurysm surveillance[J]. J Vasc Surg, 2022, 75(4): 1260-1267.
[23] Fillinger MF, Racusin J, Baker RK, et al. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: Implications for rupture risk[J]. J Vasc Surg, 2004, 39(6): 1243-1252.
[24] Cameron SJ, Russell HM, Owens AP. Antithrombotic therapy in abdominal aortic aneurysm: beneficial or detrimental[J]. Blood, 2018, 132(25): 2619-2628.
[25] Moreno DH, Cacione DG, Baptista-Silva JC. Controlled hypotension versus normotensive resuscitation strategy for people with ruptured abdominal aortic aneurysm[J]. Cochrane Database Syst Rev, 2018, 6: CD011664. doi: 10.1002/14651858.CD011664.pub3.
[26] Haller SJ, Crawford JD, Courchaine KM, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm[J]. J Vasc Surg, 2018, 67(4): 1051-1058.
[27] Barrett HE, Cunnane EM, Hidayat H, et al. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture[J]. J Vasc Surg, 2018, 67(4): 1234-1246.
[28] 周治军, 王哲, 赵珅宇, 等. 基于计算流体力学的腹主动脉瘤破裂风险研究[J]. 介入放射学杂志, 2020, 29(8): 763-767. ZHOU Zhijun, WANG Zhe, ZHAO Shenyu, et al. Study on the rupture risks of abdominal aortic aneurysm based on computational fluid dynamics[J]. Journal of Interventional Radiology, 2020, 29(8): 763-767.
[29] Meyrignac O, Bal L, Zadro C, et al. Combining volumetric and wall shear stress analysis from CT to assess risk of abdominal aortic aneurysm progression[J]. Radiology, 2020, 295(3): 722-729.
[30] Ullery BW, Hallett RL, Fleischmann D. Epidemiology and contemporary management of abdominal aortic aneurysms[J]. Abdom Radiol(NY), 2018, 43(5): 1032-1043.
[31] Chun KC, Anderson RC, Smothers HC, et al. Risk of developing an abdominal aortic aneurysm after ectatic aorta detection from initial screening[J]. J Vasc Surg, 2020, 71(6): 1913-1919.
[32] Nordness MJ, Baxter BT, Matsumura J, et al. The effect of diabetes on abdominal aortic aneurysm growth over 2 years[J]. J Vasc Surg, 2022, 75(4): 1211-1222.
[1] 史孟杰,王瑞华,刘兆轩,鲁冬林,孟庆义. 介入治疗后延迟性腹主动脉瘤破裂1例报告[J]. 山东大学学报 (医学版), 2019, 57(10): 120-122.
[2] 齐萌,黄燕,吴珊珊,刘波,张思伟. 单能量去金属伪影算法重建效果的系统评价及Meta分析[J]. 山东大学学报 (医学版), 2018, 56(9): 59-64.
[3] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
[4] 孔祥骞,王默,董典宁,种振岳,金星. 3D打印辅助开窗技术腔内修复治疗近肾动脉腹主动脉瘤[J]. 山东大学学报(医学版), 2016, 54(3): 91-94.
[5] 刘青, 商蒙蒙, 孙霄, 李杰, 杨杰, 时丹丹, 宁松. 泌尿系结石化学成分对超声声影强弱的影响[J]. 山东大学学报(医学版), 2015, 53(9): 19-23.
[6] 唐习强, 梁烨, 李天资, 陈宏明, 李近都, 罗春英, 蓝家富. TNF-α-238G/A基因多态性与腹主动脉瘤的关联性[J]. 山东大学学报(医学版), 2014, 52(S2): 5-6.
[7] 种振岳,王默,高斌斌,董典宁,张十一,孙岩. 腹主动脉瘤破裂的外科急救(附19例报告)[J]. 山东大学学报(医学版), 2010, 48(8): 111-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[6] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[7] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[10] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .