您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (10): 1-8.doi: 10.6040/j.issn.1671-7554.0.2022.0439

• 基础医学 •    下一篇

促甲状腺激素通过抗炎蛋白CTRP3促进软骨细胞分化

张薇薇1,2,华芳3,梁超帅2,褚苗苗2,孙嘉忆4,Frank Zaucke5,辛玮2,4   

  1. 1.山东大学齐鲁医学院, 山东 济南 250012;2.山东第一医科大学附属省立医院中心实验室, 山东 济南 250021;3.临沂市人民医院输血科, 山东 临沂 276003;4.山东第一医科大学临床与基础医学院, 山东 济南 250021;5.歌德大学法兰克福大学医院 骨科, 法兰克福 德国 60388
  • 发布日期:2022-09-30
  • 通讯作者: 辛玮. E-mail:vivienxin@126.com
  • 基金资助:
    国家自然科学基金(81970427,81471007)

Thyroid stimulating hormone promotes chondrocyte differentiation via anti-inflammatory protein CTRP3

ZHANG Weiwei1,2, HUA Fang3, LIANG Chaoshuai2, CHU Miaomiao2, SUN Jiayi4, FRANK Zaucke5, XIN Wei2,4   

  1. 1. Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Central Laboratory, Shandong Provincial Hospital, Shandong First Medical University, Jinan 250021, Shandong, China;
    3. Department of Blood Transfusion, Linyi Peoples Hospital of Shandong Province, Linyi 276003, Shandong, China;
    4. School of Clinical and Basic Medicine, Shandong First Medical University, Jinan 250021, Shandong, China;
    5. Department of Orthopaedics University Hospital Frankfurt, Goethe University 60388, Frankfurt, Germany
  • Published:2022-09-30

摘要: 目的 探讨促甲状腺激素(TSH)对软骨细胞(PMCs)分化的作用及相关机制。 方法 利用qRT-PCR、Western blotting、免疫荧光检测PMCs细胞外基质Ⅱ型胶原(Col Ⅱ)、Ⅹ型胶原(Col Ⅹ)以及基质金属蛋白酶3和13(MMP3,MMP13)的表达变化。采用qRT-PCR、ELISA检测TSH刺激PMCs后炎症因子白介素-1β(IL-1β)、白介素-6(IL-6)、肿瘤坏死因子-α(TNFα)的表达水平。应用高通量RNA-seq技术筛选TSH调控PMCs分化的差异表达基因,通过在原代PMCs中过表达CTRP3,探索TSH调控PMCs分化的机制。 结果 qRT-PCR、Western blotting结果显示,TSH刺激下PMCs中MMP3(P=0.016,P<0.001)和MMP13(P均<0.001)的表达显著增加。qRT-PCR、ELISA结果显示,IL-1β(P=0.007,P=0.002)、IL-6(P均<0.001)、TNFα(P=0.006,P<0.001)的表达上调。通过RNA-seq筛选出差异表达基因CTRP3。CTRP3过表达后PMCs中Col Ⅱ表达增高(F=76.062,F=77.085,F=190.115)、Col Ⅹ表达降低(F=33.494,F=38.424,F=43.351);同时与单纯TSH刺激相比,MMP3(F=88.607,F=214.145,F=135.60)、MMP13(F=116.561,F=138.674,F=86.865)表达均显著降低(P均<0.001),IL-1β、IL-6、TNFα的表达则均降低(P均<0.001)。 结论 CTRP3对TSH诱导的PMCs分化具有保护作用,有望成为亚临床甲状腺功能减退症(SCH)患者关节损伤的潜在治疗靶点。

关键词: 骨关节炎, 促甲状腺激素, 软骨细胞分化, C1q/肿瘤坏死因子相关蛋白3, 炎症因子

Abstract: Objective To investigate the role of thyroid stimulating hormone(TSH)in the differentiation of primary mouse chondrocytes(PMCs)and the underlying mechanism. Methods The expressions of chondrocyte differentiation markers, including extracellular matrix collagen type Ⅱ(Col Ⅱ)and collagen type Ⅹ(Col Ⅹ), and matrix metalloproteinase 3(MMP3)and matrix metalloproteinase 13(MMP13)were detected on both mRNA and protein levels with qRT-PCR, Western blotting and immunofluorescent staining. The changes of interleukin-1β(IL-1β), interleukin-6(IL-6)and tumor necrosis factor-α(TNFα)were detected in TSH stimulated group and control group with qRT-PCR and ELISA. The differentially expressed genes of PMCs treated with TSH were screened with high-throughput RNA-Seq. PMCs were transfected with C1q/tumor necrosis factor-related protein 3(CTRP3)overexpression plasmid o explore the mechanism of TSH regulating PMCs differentiation. Results TSH upregulated the expressions of MMP3(P=0.016, P<0.001), MMP13(P<0.001), IL-1β(P=0.007, P=0.002), IL-6(P<0.001)and TNFα(P=0.006, P<0.001). The differentially expressed gene CTRP3 was screened out with RNA-seq. After CTRP3 overexpression, the expression of Col Ⅱ in PMCs was increased(F=76.062, F=77.085, F=190.115, P<0.001), while the expression of Col Ⅹ was decreased(F=33.494, F=38.424, F=43.351). Compared with simple TSH stimulation, after CTRP3 overexpression, the expressions of MMP3 (F=88.607, F=214.145, F=135.60), MMP13(F=116.561, F=138.674, F=86.865), IL-1β, IL-6 and TNFα were significantly decreased(P<0.001). Conclusion CTRP3 has a protective effect on TSH-induced differentiation of PMCs, and it may become a promising anti-inflammatory therapeutic target for joint injury in patients with subclinical hypothyroidism(SCH).

Key words: Osteoarthritis, Thyroid stimulating hormone, Primary mouse chondrocytes differentiation, C1q/tumor necrosis factor-related protein 3, Inflammatory cytokines

中图分类号: 

  • R446
[1] Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044. doi:10.1038/boneres.2016.44
[2] Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182):1745-1759.
[3] Krieger CC, Neumann S, Gershengorn MC. TSH/IGF1 receptor crosstalk: mechanism and clinical implications[J]. Pharmacol Ther, 2020, 209: 107502. doi: 10.1016/j.pharmthera.2020.107502.
[4] Pasqualetti G, Pagano G, Rengo G, et al. Subclinical hypothyroidism and cognitive impairment: systematic review and meta-analysis[J]. J Clin Endocrinol Metab, 2015, 100(11): 4240-4248.
[5] Davies T, Marians R, Latif R. The TSH receptor reveals itself[J]. J Clin Invest, 2002, 110(2): 161-164.
[6] 胡晓, 常小倩, 宋延彬. CTRP3研究新进展[J]. 生理科学进展, 2020, 51(4): 299-304.
[7] Elgadi A, Zemack H, Marcus C, et al. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis[J]. Biochem Biophys Res Commun, 2010, 393(3): 526-530.
[8] Xin W, Yu Y, Ma Y, et al. Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes[J]. Endocr J, 2017, 64(7): 749-757.
[9] Rim YA, Nam Y, Ju JH. The Role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression[J]. Int J Mol Sci, 2020, 21(7): 2358. doi: 10.3390/ijms21072358.
[10] Peterson JM, Seldin MM, Wei Z, et al. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(3): G214-G224.
[11] Murayama MA, Kakuta S, Maruhashi T, et al. CTRP3 plays an important role in the development of collagen-induced arthritis in mice[J]. Biochem Biophys Res Commun, 2014, 443(1): 42-48.
[12] Kim MJ, Park EJ, Lee W, et al. Regulation of the transcriptional activation of CTRP3 in chondrocytes by c-Jun[J]. Mol Cell Biochem, 2012, 368(1-2): 111-117.
[13] Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease[J]. Best Pract Res Clin Rheumatol, 2006, 20(5): 983-1002.
[14] Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting dysregulation of metalloproteinase activity in osteoarthritis[J]. Calcif Tissue Int, 2021, 109(3): 277-290.
[15] Suh S, Kim DK. Subclinical hypothyroidism and cardiovascular disease[J]. Endocrinol Metab(Seoul), 2015, 30(3): 246-251.
[16] Endo T, Kobayashi T. Expression of functional TSH receptor in white adipose tissues of hyt/hyt mice induces lipolysis in vivo[J]. Am J Physiol Endocrinol Metab, 2012, 302(12): E1569-E1575.
[17] Martinez-deMena R, Anedda A, Cadenas S, et al. TSH effects on thermogenesis in rat brown adipocytes[J]. Mol Cell Endocrinol, 2015, 404: 151-158. doi:10.1016/j.mce.2015.01.028.
[18] Yang C, Lu M, Chen W, et al. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques[J]. J Exp Med, 2019, 216(5): 1182-1198.
[19] Luan S, Bi W, Shi S, et al. Thyrotropin receptor signaling deficiency impairs spatial learning and memory in mice[J]. J Endocrinol, 2020, 246(1): 41-55.
[20] Endo T, Kobayashi T. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate[J]. Am J Physiol Endocrinol Metab, 2013, 305(5): E660-E666.
[21] Bassett JH, Williams AJ, Murphy E, et al. A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism[J]. Mol Endocrinol, 2008, 22(2): 501-512.
[22] Schäffler A, Weigert J, Neumeier M, et al. Regulation and function of collagenous repeat containing sequence of 26-kDa protein gene product “cartonectin”[J]. Obesity(Silver Spring), 2007,15(2): 303-313.
[23] Maeda T, Abe M, Kurisu K, et al. Molecular cloning and characterization of a novel gene, CORS26, encoding a putative secretory protein and its possible involvement in skeletal development[J]. J Biol Chem, 2001, 276(5): 3628-3634.
[24] Huang Y, Wan G, Tao J. C1q/TNF-related protein-3 exerts the chondroprotective effects in IL-1β-treated SW1353 cells by regulating the FGFR1 signaling[J]. Biomed Pharmacother, 2017, 85: 41-46. doi: 10.1016/j.biopha.2016.11.128.
[25] Petersen PS, Wolf RM, Lei X, et al. Immunomodulatory roles of CTRP3 in endotoxemia and metabolic stress[J]. Physiol Rep, 2016, 4(5): e12735. doi:10.14814/phy2.12735.
[26] Zhang J, Xu J, Lin X, et al. CTRP3 ameliorates fructose-induced metabolic associated fatty liver disease via inhibition of xanthine oxidase-associated oxidative stress[J]. Tissue Cell, 2021, 72: 101595. doi:10.1016/j.tice.2021.101595.
[27] Hu TY, Li LM, Pan YZ, et al. CTRP3 inhibits high glucose-induced human glomerular mesangial cell dysfunction[J]. J Cell Biochem, 2019, 120(4): 5729-5736.
[28] Gao J, Qian T, Wang W. CTRP3 activates the AMPK/SIRT1-PGC-1α pathway to protect mitochondrial biogenesis and functions in cerebral ischemic stroke[J]. Neurochem Res, 2020, 45(12): 3045-3058.
[29] Lv C, He Y, Wei M, et al. CTRP3 ameliorates cerulein-induced severe acute pancreatitis in mice via SIRT1/NF-κB/p53 axis[J]. Biosci Rep, 2020, 40(10): BSR20200092. doi: 10.1042/BSR20200092.
[30] Zhang R, Zhong L, Zhou J, et al. Complement-C1q TNF-related protein 3 alleviates mesangial cell activation and inflammatory response stimulated by secretory IgA[J]. Am J Nephrol, 2016, 43(6): 460-468.
[31] Qu H, Deng M, Wang H, et al. Plasma CTRP-3 concentrations in Chinese patients with obesity and type II diabetes negatively correlate with insulin resistance[J]. J Clin Lipidol, 2015, 9(3): 289-294.
[32] Ma ZG, Yuan YP, Xu SC, et al. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats[J]. Diabetologia, 2017, 60(6): 1126-1137.
[1] 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73.
[2] 马良,张元凯,姜淑伟. 便携式导航与传统手术器械下的20例全膝关节置换术后早期疗效随访对比[J]. 山东大学学报 (医学版), 2022, 60(6): 75-81.
[3] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[4] 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81.
[5] 苗壮,刘培来,卢群山,姚天笑,李松林,罗德素. 双柱活动型单髁假体治疗膝关节内侧骨关节炎的早期疗效分析[J]. 山东大学学报 (医学版), 2021, 59(5): 90-95.
[6] 华芳,张薇薇,吕波,辛玮. 生物信息学分析骨关节炎滑膜炎症相关基因和分子途径[J]. 山东大学学报 (医学版), 2021, 59(3): 10-17.
[7] 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82-88.
[8] 胡昭,王强. 新型冠状病毒感染相关性肾损伤[J]. 山东大学学报 (医学版), 2020, 58(3): 26-31.
[9] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[10] 杨张杰,王宇欣,陈冬梅,赵帅,虎娜,马良宏,马会明. 枸杞籽油对小鼠睾丸支持细胞衰老模型的抗炎作用[J]. 山东大学学报 (医学版), 2020, 58(12): 15-22.
[11] 于娜,郭情情,孙梅,盛燕,马增香,秦莹莹. 甲状腺癌术后行IVF/ICSI-ET助孕临床结局[J]. 山东大学学报 (医学版), 2018, 56(9): 54-58.
[12] 闫松鹤,高立芬,赵伟,王燕. 人牙根尖乳头细胞抑制人单核细胞THP-1活化及其分子机制[J]. 山东大学学报(医学版), 2017, 55(3): 49-53.
[13] 卿立,何天祎,乔婧婷,崔晨,侯新国,陈丽. 富半胱氨酸蛋白61在高脂诱导肥胖小鼠脂肪组织中的表达[J]. 山东大学学报 (医学版), 2017, 55(12): 7-12.
[14] 张琳,李敬,王泽,张江涛,马增香,石玉华. 多囊卵巢综合征患者促甲状腺激素对血糖、血脂的影响[J]. 山东大学学报(医学版), 2017, 55(1): 80-84.
[15] 杨延军,梁静,李芳,杜令席. 常山酮对小鼠子宫内膜异位症巨噬细胞极化的调控作用[J]. 山东大学学报(医学版), 2016, 54(9): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[6] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[7] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[10] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .