山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 51-56.doi: 10.6040/j.issn.1671-7554.0.2021.0961
葛少华,丁田,刘红蕊
GE Shaohua, DING Tian, LIU Hongrui
摘要: 受损组织的修复再生一直是再生医学的研究热点。传统再生医学依靠种子细胞、生长因子及支架材料来实现组织再生,但是其临床安全性及有效性仍有待验证。近年来越来越多的研究证据表明免疫系统在组织愈合过程中起着至关重要的作用,这为再生医学提供了新的研究思路。2型免疫是以白细胞介素(IL)-4、IL-5、IL-9、IL-10、IL-13和IL-33的产生为特征,由多种免疫细胞参与的免疫反应,在调控组织修复过程中发挥关键作用。本文对2型免疫中的细胞因子及各个免疫细胞亚群在组织修复过程中的作用及调控机制做一综述。
中图分类号:
[1] Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis [J]. Nat Rev Immunol, 2018, 18(1): 62-76. [2] Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration [J]. Science, 2017, 356(6342): 1026. [3] Raziyeva K, Kim Y, Zharkinbekov Z, et al. Immunology of acute and chronic wound healing [J]. Biomolecules, 2021, 11(5): 700. [4] 朱方强, 陈民佳, 朱明, 等. 炎症与组织再生修复 [J]. 中华损伤与修复杂志(电子版), 2017, 12(1): 72-76. ZHU Fangqiang, CHEN Minjia, ZHU Ming, et al. Inflammatory and tissue regeneration, repair [J]. Chinese Journal of Repair and Wound Healing(Electronic Edition), 2017, 12(1): 72-76. [5] Boucher D, Monteleone M, Coll RC, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity [J]. J Exp Med, 2018, 215(3): 827-840. [6] Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies [J]. Nat Rev Immunol, 2015, 15(5): 271-282. [7] Otsuka A, Nakajima S, Kubo M, et al. Basophils are required for the induction of Th2 immunity to haptens and peptide antigens [J]. Nat Commun, 2013, 4:1739. doi: 10.1038/ncomms2740. [8] Goh YP, Henderson NC, Heredia JE, et al. Eosinophils secrete IL-4 to facilitate liver regeneration [J]. Proc Natl Acad Sci U S A, 2013, 110(24): 9914-9919. [9] Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing [J]. Cell Mol Life Sci, 2016, 73(20): 3861-3885. [10] Wen T, Rothenberg ME. The regulatory function of eosinophils [J]. Microbiol Spectr, 2016, 4(5): 10.1128/microbiolspec.MCHD-0020-2015. doi: 10.1128/microbiolspec.MCHD-0020-2015. [11] Turner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation [J]. J Exp Med, 2013, 210(13): 2951-2965. [12] Rauber S, Luber M, Weber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells [J]. Nat Med, 2017, 23(8): 938-944. [13] Lobo-Silva D, Carriche GM, Castro AG, et al. Balancing the immune response in the brain: IL-10 and its regulation [J]. J Neuroinflammation, 2016, 13(1): 297. [14] Soroosh P, Doherty TA, Duan W, et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance [J]. J Exp Med, 2013, 210(4): 775-788. [15] King A, Balaji S, Le LD, et al. Regenerative wound healing: the role of interleukin-10 [J]. Adv Wound Care, 2013, 3(4): 315-323. [16] Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation [J]. Immunity, 2014, 40(3): 425-435. [17] Liew FY. IL-33: a Janus cytokine [J]. Ann Rheum Dis, 2012, 71 Suppl 2: i101-104. doi: 10.1136/annrheumdis-2011-200589. [18] Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 axis in organ fibrosis [J]. Front Immunol, 2018, 9:2432. doi: 10.3389/fimmu.2018.02432. [19] Lunderius-Andersson C, Enoksson M, Nilsson G. Mast cells respond to cell injury through the recognition of IL-33 [J]. Front Immunol, 2012, 3: 82. doi: 10.3389/fimmu.2012.00082. [20] Yin H, Li X, Hu S, et al. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages [J]. Mol Immunol, 2013, 56(4): 347-353. [21] Lopetuso LR, Scaldaferri F, Pizarro TT. Emerging role of the interleukin(IL)-33/ST2 axis in gut mucosal wound healing and fibrosis [J]. Fibrogenesis Tissue Repair, 2012, 5(1): 18. [22] Sadtler K, Estrellas K, Allen BW, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells [J]. Science, 2016, 352(6283): 366-370. [23] Farhadihosseinabadi B, Salimi M, Kazemi B, et al. Inducing type 2 immune response, induction of angiogenesis, and anti-bacterial and anti-inflammatory properties make Lacto-n-Neotetraose(LNnT)a therapeutic choice to accelerate the wound healing process [J]. Med Hypotheses, 2020, 134: 1093890. doi: 10.1016/j.mehy.2019.109389. [24] Wu J, Hayes BW, Phoenix C, et al. A highly polarized TH2 bladder response to infection promotes epithelial repair at the expense of preventing new infections [J]. Nat Immunol, 2020, 21(6): 671-683. [25] Bal SM, Golebski K, Spits H. Plasticity of innate lymphoid cell subsets [J]. Nat Rev Immunol, 2020, 20(9): 552-565. [26] Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity [J]. Front Immunol, 2019, 10: 861. doi: 10.3389/fimmu.2019.00861. [27] Halim TY, Krauss RH, Sun AC, et al. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation [J]. Immunity, 2012, 36(3): 451-463. [28] Zhu P, Zhu X, Wu J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3 [J]. Nat Immunol, 2019, 20(2): 183-194. [29] Besnard AG, Guabiraba R, Niedbala W, et al. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells [J]. PLoS Pathog, 2015, 11(2): e1004607. doi:10.1371/journal.ppat.1004607. [30] Rak GD, Osborne LC, Siracusa MC, et al. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing [J]. J Invest Dermatol, 2016, 136(2): 487-496. [31] Kumar V. Innate lymphoid cells and adaptive immune cells cross-talk: a secret talk revealed in immune homeostasis and different inflammatory conditions [J]. Int Rev Immunol, 2021, 40(3): 217-251. [32] Mirchandani AS, Besnard AG, Yip E, et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses [J]. J Immunol, 2014, 192(5): 2442-2448. [33] Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis [J]. Immunity, 2016, 44(3): 450-462. [34] Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration [J]. Proc Natl Acad Sci U S A, 2013, 110(23): 9415-9420. [35] Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo [J]. J Physiol, 2007, 578(Pt 1): 327-336. [36] Kimball AS, Davis FM, Dendekker A, et al. The histone methyltransferase setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair [J]. Immunity, 2019, 51(2): 258-71 e5. doi: 10.1016/j.immuni.2019.06.015. [37] Liu Y, Li Y, Li N, et al. TGF-beta1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21 [J]. Sci Rep, 2016, 6: 32231. doi: 10.1038/srep32231. [38] Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation [J]. Biochim Biophys Acta, 2013, 1832(7): 876-883. [39] Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease [J]. Nat Rev Immunol, 2013, 13(1): 9-22. [40] Heredia JE, Mukundan L, Chen FM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration [J]. Cell, 2013, 153(2): 376-388. [41] Inclan-Rico JM, Ponessa JJ, Valero-Pacheco N, et al. Basophils prime group 2 innate lymphoid cells for neuropeptide-mediated inhibition [J]. Nat Immunol, 2020, 21(10): 1181-1193. [42] Walker JA, Mckenzie ANJ. TH2 cell development and function [J]. Nat Rev Immunol, 2018, 18(2): 121-133. [43] Kim S, Prout M, Ramshaw H, et al. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3 [J]. J Immunol, 2010, 184(3): 1143-1147. [44] Lloyd CM, Snelgrove RJ. Type 2 immunity: Expanding our view [J]. Sci Immunol, 2018, 3(25): eaat1604. doi: 10.1126/sciimmunol.aat1604. [45] Ozpinar EW, Frey AL, Cruse G, et al. Mast cell-biomaterial interactions and tissue repair [J]. Tissue Eng Part B Rev, 2021. doi: 10.1089/ten.TEB.2020.0275. [46] Zimmermann C, Troeltzsch D, Giménez-Rivera VA, et al. Mast cells are critical for controlling the bacterial burden and the healing of infected wounds [J]. Proc Natl Acad Sci U S A, 2019, 116(41): 20500-20504. [47] De Souza Junior DA, Borges AC, Santana AC, et al. Mast cell proteases 6 and 7 stimulate angiogenesis by inducing endothelial cells to release angiogenic factors [J]. PLoS One, 2015, 10(12): e0144081. doi: 10.1371/journal.pone.0144081. [48] Wulff BC, Parent AE, Meleski MA, et al. Mast cells contribute to scar formation during fetal wound healing [J]. J Invest Dermatol, 2012, 132(2): 458-465. |
[1] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[2] | 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117. |
[3] | 张阿敏,李国盛,李福海. 儿童支原体大叶性肺炎肺泡灌洗液细胞因子与局部炎症的相关性[J]. 山东大学学报 (医学版), 2022, 60(11): 82-88. |
[4] | 蔡春芳,易丹妮,郭芝亮,何耀娟. P16蛋白与TCT、HR-HPV的相关性及对不同子宫颈病变诊断的效能[J]. 山东大学学报 (医学版), 2022, 60(1): 40-47. |
[5] | 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36. |
[6] | 乔宠,王婷婷. 母胎免疫调节机制的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 24-31. |
[7] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[8] | 李湘青,殷欣,赵雪莲,赵培庆. NK细胞亚群CD56bright在帕金森患者外周血中的表达及临床意义[J]. 山东大学学报 (医学版), 2021, 59(2): 34-40. |
[9] | 王艳,张宇卉,胡耐博,滕广帅,周圆,白洁. 基于单细胞测序分析急性髓系白血病患者骨髓免疫微环境的特点[J]. 山东大学学报 (医学版), 2021, 59(10): 30-38. |
[10] | 鞠秀丽. 间充质干细胞治疗新型冠状病毒肺炎的潜在机制和研究进展[J]. 山东大学学报 (医学版), 2020, 58(3): 32-37. |
[11] | 余桂芳,陈树娣,陈雪竹,侯开连,梁敏. miR-916a调控SOCS6促进HBx-HepG2细胞生长[J]. 山东大学学报(医学版), 2016, 54(12): 14-19. |
[12] | 袁冰,李冉冉,韩明勇. 恶性黑色素瘤调节肺组织微环境并促进肿瘤肺转移的实验研究[J]. 山东大学学报(医学版), 2016, 54(11): 13-18. |
[13] | 张明明,安永辉,韩彩莉,张瑛琪,马明,李娜,邹长鹏. CIK细胞联合光动力治疗中晚期食管癌的疗效观察[J]. 山东大学学报(医学版), 2016, 54(1): 38-41. |
[14] | 李秀华, 李晓丽, 段瑞生, 朱梅佳, 曹莉莉, 李衍滨, 王思, 岳龙涛, 马庆海, 刘菲. 1,25(OH)2D3诱导实验性自身免疫性重症肌无力大鼠免疫耐受的机制[J]. 山东大学学报(医学版), 2015, 53(8): 5-10. |
[15] | 张蓬, 岳龙涛, 李亨, 张民, 王聪聪, 段瑞生, 窦迎春. 血脂康对实验性自身免疫性神经炎的治疗潜能[J]. 山东大学学报(医学版), 2015, 53(2): 1-5. |
|