山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 94-98.doi: 10.6040/j.issn.1671-7554.0.2019.1405
金海燕1,张炎1,2,马小莉1,韩羽1,3,赵蕙琛1,刘元涛1,张玉超1
JIN Haiyan1, ZHANG Yan1,2, MA Xiaoli1, HAN Yu1,3, ZHAO Huichen1, LIU Yuantao1, ZHANG Yuchao1
摘要: 目的 探讨2型糖尿病(T2DM)合并冠状动脉粥样硬化性心脏病(CAD)患者血清miR-122和miR-33a表达的改变及其意义。 方法 收集2016年7月至2018年7月收治的2型糖尿病患者32例(T2DM组)、冠心病患者32例(CAD组)、2型糖尿病合并冠心病患者32例(T2DM+CAD组)的临床资料,另选择同期体检的健康者32例(对照组)。经分离提纯血浆总microRNA,采用实时定量PCR法检测miR122和miR33a的表达量。 结果 与对照组相比,T2DM组、CAD组和T2DM+CAD组血浆miR122mRNA表达量明显增加(P<0.05);与T2DM组相比,CAD组和T2DM+CAD组miR-122mRNA表达量明显增加(P<0.05)。miR-122对CAD组和T2DM+CAD组的ROC曲线下面积分别为0.72±0.05与0.77±0.04。各组间miR-33a表达水平无明显差异(P>0.05)。 结论 血浆miR-122是2型糖尿病合并冠心病较好的辅助诊断指标。
中图分类号:
[1] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中国糖尿病杂志, 2014, 88(7): 1227-1245. |
[2] | Hu DY, Pan CY, Yu JM. The relationship between coronary artery disease and abnormal glucose regulation in China: the China Heart Survey [J]. Eur Heart J, 2006, 27(21): 2573-2579. |
[3] | Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with Non-ST-Elevation acute coronary syndromes: a report of the American college of cardiology/American heart association task force on practice guidelines [J]. J Am Coll Cardiol, 2014, 64(24): e139-228. |
[4] | Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122 [J]. Biochem Soc Trans, 2010, 38(6): 1553-1557. |
[5] | Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis [J]. Science, 2010, 328(5985): 1566-1569. |
[6] | Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling [J]. Proc Natl Acad Sci USA, 2018, 108(22): 9232-9237. |
[7] | Sacco J, Adeli K. MicroRNAs: emerging roles in lipid and lipoprotein metabolism [J]. Curr Opin Lipidol, 2012, 23(3): 220-225. |
[8] | Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis [J]. Circ Res, 2006, 98(5): 596-605. |
[9] | Htay T, Soe K, Lopez-Perez A, et al. Motality and cardiovascular disease in type 1 and type 2 diabetes [J]. Curr Cardiol Rep, 2019, 21(6): 45-51. |
[10] | Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover [J]. Nat Rev Mol Cell Biol, 2019, 20(9): 511. |
[11] | Reichholf B, Herzog VA, Fasching N, et al. Time-resolved small RNA sequencing unravels the molecular principels of miroRNA homeostasis [J]. Mol Cell, 2019, 75(4): 756-768. |
[12] | Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders [J]. Nat Rev Mol Cell Biol, 2012, 13(4): 239-250. |
[13] | Giral H, Kratzer A, Landmesser U. MicroRNAs in lipid metabolism and atherosclerosis [J]. Best Prac Res Clin Endocrinol Metab, 2016, 30(5): 665-676. |
[14] | Koyama S, Horie T, Nishino T, et al. Identification of differential roles of microRNA-33a and -33b during atherosclerosis progression with genetically modified mice [J]. J Am Heart Assoc, 2019, 8(13): e012609. |
[15] | Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J]. Cell Metab, 2006, 3(2): 87-98. |
[16] | Sedgeman LR, Michell DL, Vickers KC. Integrative roles of microRNAs in lipid metabolism and dyslipidemia [J]. Curr Opin Lipidol, 2019, 30(3): 165-171. |
[17] | Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism [J]. J Lipid Res, 2010, 51(6): 1513-1523. |
[18] | Valdmanis PN, Kim HK, Chu K, et al. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression [J]. Nat Commun, 2018, 9(1): 5321-5329. |
[19] | Naderi M, Pazouki A, Arefian E, et al. Two triacylglycerol pathway genes, CTDNEP1 and LPIN1, are down-regulated by has-miR-122-5p in hepatocytes [J]. Atch Iran Med, 2017, 20(3): 165-171. |
[20] | Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression [J]. J Clin Invest, 2012, 122(8):2773-2776. |
[21] | Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis [J]. J Clin Invest, 2012, 122(8): 2884-2897. |
[22] | Willeit P, Skroblin P, Moschen AR, et al. Circulating microRNA-122 is associated with the risk of new-onset-metabolic syndrome and type 2 diabetes [J]. Diabetes, 2017, 66(2): 347-357. |
[23] | Castano C, Kalko S, Novials A, et al. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice [J]. Diabetes, 2018, 115(48): 12158-12163. |
[24] | 吴霞, 王学法, 金鑫. 急性冠脉综合征患者血浆miR-122和miR-3149 表达的临床意义[J]. 山东医药, 2017, 57(4): 88-90. |
[25] | Shah R, Murthy V, Pacold M, et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes [J]. Diabetes Care, 2017, 40(4): 546-553. |
[26] | Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease [J]. Lipids Health Dis, 2012, 11: 55-62. doi: 10.1186/1476-511X-11-55 |
[27] | Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33a and the SREBP host genes cooperate to control cholesterol homeostasis [J]. Science, 2010, 328(5985): 1566-1569. |
[28] | Platania CBM, Maisto R, Trotta MC, et al. Retina and circulating miRNA expression patterns in diabetic retinopathy: an in silic and in vivo approach [J]. Br J Pharmacol, 2019, 176(13): 2179-2194. |
[1] | 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25. |
[2] | 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44. |
[3] | 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102. |
[4] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[5] | 唐博,邵静,崔静,孙健平. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报 (医学版), 2020, 58(3): 99-106. |
[6] | 曾雁冰,王秋鹏,方亚. 厦门市糖尿病“三师共管”模式的卫生经济学评价[J]. 山东大学学报 (医学版), 2019, 57(8): 89-94. |
[7] | 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91. |
[8] | 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93. |
[9] | 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26. |
[10] | 徐琼琼,郭晓雷,楚洁,景正月,张新益,周成超. 山东省2型糖尿病患者健康相关生命质量及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(3): 96-103. |
[11] | 田忠艳,李玉倩,刘晓田,史园园,张海庆,张霞,千新玲,尹磊,赵景志,王重建. PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究[J]. 山东大学学报 (医学版), 2018, 56(7): 51-56. |
[12] | 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32. |
[13] | 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86. |
[14] | 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11. |
[15] | 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72. |
|