您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (3): 94-98.doi: 10.6040/j.issn.1671-7554.0.2019.1405

• • 上一篇    下一篇

MiR-122与miR-33a在2型糖尿病合并冠心病患者中的表达

金海燕1,张炎1,2,马小莉1,韩羽1,3,赵蕙琛1,刘元涛1,张玉超1   

  1. 1. 青岛市市立医院内分泌科, 山东 青岛 266011;2. 赤峰市医院内分泌科, 内蒙古自治区 赤峰 024000;3. 南阳市第二人民医院, 河南 南阳 473000
  • 出版日期:2020-03-10 发布日期:2022-09-27
  • 通讯作者: 张玉超. E-mail:yc.zhang@hotmail.com

Expressions of miR-122 and miR-33a in patients with type 2 diabetes complicated with coronary artery disease

JIN Haiyan1, ZHANG Yan1,2, MA Xiaoli1, HAN Yu1,3, ZHAO Huichen1, LIU Yuantao1, ZHANG Yuchao1   

  1. 1. Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266011, Shandong, China;
    2. Department of Endocrinology, Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia, China;
    3. Nanyang Second General Hospital, Nanyang 473000, Henan, China
  • Online:2020-03-10 Published:2022-09-27

摘要: 目的 探讨2型糖尿病(T2DM)合并冠状动脉粥样硬化性心脏病(CAD)患者血清miR-122和miR-33a表达的改变及其意义。 方法 收集2016年7月至2018年7月收治的2型糖尿病患者32例(T2DM组)、冠心病患者32例(CAD组)、2型糖尿病合并冠心病患者32例(T2DM+CAD组)的临床资料,另选择同期体检的健康者32例(对照组)。经分离提纯血浆总microRNA,采用实时定量PCR法检测miR122和miR33a的表达量。 结果 与对照组相比,T2DM组、CAD组和T2DM+CAD组血浆miR122mRNA表达量明显增加(P<0.05);与T2DM组相比,CAD组和T2DM+CAD组miR-122mRNA表达量明显增加(P<0.05)。miR-122对CAD组和T2DM+CAD组的ROC曲线下面积分别为0.72±0.05与0.77±0.04。各组间miR-33a表达水平无明显差异(P>0.05)。 结论 血浆miR-122是2型糖尿病合并冠心病较好的辅助诊断指标。

关键词: miR122, miR33a, 2型糖尿病, 冠状动脉粥样硬化性心脏病

Abstract: Objective To investigate the expressions and diagnostic significance of serum miR-122 and miR-33a in patients with type 2 diabetes mellitus(T2DM)complicated with coronary artery heart disease(CAD). Methods Fast bloods samples were collected from 32 healthy volunteers(NC group), 32 T2DM patients(T2DM group), 32 CAD patients(CAD group)and 32 patients with T2DM and CAD(T2DM+CAD group). The expressions of miR-122 and miR-33a were detected with real-time quantitative PCR. Specificity and sensitivity of the association between miR-122 in T2DM and CAD were evaluated with receiver operating characteristic(ROC)and area under the curve(AUC). Results Compared with the NC group, the other three groups had significantly higher expressions of miR-122(P<0.05). Compared with T2DM group, the CAD and T2DM+CAD groups had significantly higher expression of miR-122(P<0.05). The AUC of miR-122 in CAD group and T2DM+CAD group was 0.72±0.05 and 0.77±0.04, respectively. There were no significant differences in the miR-33a expression among the four groups(P>0.05). Conclusion Serum miR-122 can serve as a good diagnostic marker for T2DM complicated with CAD.

Key words: miR-122, miR-33a, Type 2 diabetes mellitus, Coronary artery heart disease

中图分类号: 

  • R574
[1] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中国糖尿病杂志, 2014, 88(7): 1227-1245.
[2] Hu DY, Pan CY, Yu JM. The relationship between coronary artery disease and abnormal glucose regulation in China: the China Heart Survey [J]. Eur Heart J, 2006, 27(21): 2573-2579.
[3] Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with Non-ST-Elevation acute coronary syndromes: a report of the American college of cardiology/American heart association task force on practice guidelines [J]. J Am Coll Cardiol, 2014, 64(24): e139-228.
[4] Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122 [J]. Biochem Soc Trans, 2010, 38(6): 1553-1557.
[5] Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis [J]. Science, 2010, 328(5985): 1566-1569.
[6] Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling [J]. Proc Natl Acad Sci USA, 2018, 108(22): 9232-9237.
[7] Sacco J, Adeli K. MicroRNAs: emerging roles in lipid and lipoprotein metabolism [J]. Curr Opin Lipidol, 2012, 23(3): 220-225.
[8] Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis [J]. Circ Res, 2006, 98(5): 596-605.
[9] Htay T, Soe K, Lopez-Perez A, et al. Motality and cardiovascular disease in type 1 and type 2 diabetes [J]. Curr Cardiol Rep, 2019, 21(6): 45-51.
[10] Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover [J]. Nat Rev Mol Cell Biol, 2019, 20(9): 511.
[11] Reichholf B, Herzog VA, Fasching N, et al. Time-resolved small RNA sequencing unravels the molecular principels of miroRNA homeostasis [J]. Mol Cell, 2019, 75(4): 756-768.
[12] Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders [J]. Nat Rev Mol Cell Biol, 2012, 13(4): 239-250.
[13] Giral H, Kratzer A, Landmesser U. MicroRNAs in lipid metabolism and atherosclerosis [J]. Best Prac Res Clin Endocrinol Metab, 2016, 30(5): 665-676.
[14] Koyama S, Horie T, Nishino T, et al. Identification of differential roles of microRNA-33a and -33b during atherosclerosis progression with genetically modified mice [J]. J Am Heart Assoc, 2019, 8(13): e012609.
[15] Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J]. Cell Metab, 2006, 3(2): 87-98.
[16] Sedgeman LR, Michell DL, Vickers KC. Integrative roles of microRNAs in lipid metabolism and dyslipidemia [J]. Curr Opin Lipidol, 2019, 30(3): 165-171.
[17] Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism [J]. J Lipid Res, 2010, 51(6): 1513-1523.
[18] Valdmanis PN, Kim HK, Chu K, et al. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression [J]. Nat Commun, 2018, 9(1): 5321-5329.
[19] Naderi M, Pazouki A, Arefian E, et al. Two triacylglycerol pathway genes, CTDNEP1 and LPIN1, are down-regulated by has-miR-122-5p in hepatocytes [J]. Atch Iran Med, 2017, 20(3): 165-171.
[20] Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression [J]. J Clin Invest, 2012, 122(8):2773-2776.
[21] Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis [J]. J Clin Invest, 2012, 122(8): 2884-2897.
[22] Willeit P, Skroblin P, Moschen AR, et al. Circulating microRNA-122 is associated with the risk of new-onset-metabolic syndrome and type 2 diabetes [J]. Diabetes, 2017, 66(2): 347-357.
[23] Castano C, Kalko S, Novials A, et al. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice [J]. Diabetes, 2018, 115(48): 12158-12163.
[24] 吴霞, 王学法, 金鑫. 急性冠脉综合征患者血浆miR-122和miR-3149 表达的临床意义[J]. 山东医药, 2017, 57(4): 88-90.
[25] Shah R, Murthy V, Pacold M, et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes [J]. Diabetes Care, 2017, 40(4): 546-553.
[26] Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease [J]. Lipids Health Dis, 2012, 11: 55-62. doi: 10.1186/1476-511X-11-55
[27] Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33a and the SREBP host genes cooperate to control cholesterol homeostasis [J]. Science, 2010, 328(5985): 1566-1569.
[28] Platania CBM, Maisto R, Trotta MC, et al. Retina and circulating miRNA expression patterns in diabetic retinopathy: an in silic and in vivo approach [J]. Br J Pharmacol, 2019, 176(13): 2179-2194.
[1] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[2] 郑凤杰,宋玉文,孙爱丽,潘喆,王殿辉,娄能俊,吕丽,庄向华,陈诗鸿. 糖尿病周围神经病变与肌少症的关联性[J]. 山东大学学报 (医学版), 2021, 59(6): 38-44.
[3] 刘萍,宋玉文,王萍,田光伟,郑凤杰,吕丽,杜娇娇,张静,庄向华,陈诗鸿. 维生素D缺乏与2型糖尿病合并抑郁状态的相关性[J]. 山东大学学报 (医学版), 2021, 59(6): 51-56,102.
[4] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[5] 唐博,邵静,崔静,孙健平. 2型糖尿病发病与高密度脂蛋白关系的机制研究[J]. 山东大学学报 (医学版), 2020, 58(3): 99-106.
[6] 曾雁冰,王秋鹏,方亚. 厦门市糖尿病“三师共管”模式的卫生经济学评价[J]. 山东大学学报 (医学版), 2019, 57(8): 89-94.
[7] 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91.
[8] 姜立娟,刘福强,蒋子允,李文娟,林鹏,王川,侯新国,陈丽. 达格列净改善超重及肥胖2型糖尿病患者脂代谢及内脏脂肪含量[J]. 山东大学学报 (医学版), 2019, 57(6): 87-93.
[9] 杜昊,程玉刚,黄鑫,刘少壮,张光永,胡三元. 袖状胃切除术对2型糖尿病大鼠肺组织损伤的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 20-26.
[10] 徐琼琼,郭晓雷,楚洁,景正月,张新益,周成超. 山东省2型糖尿病患者健康相关生命质量及其影响因素[J]. 山东大学学报 (医学版), 2019, 57(3): 96-103.
[11] 田忠艳,李玉倩,刘晓田,史园园,张海庆,张霞,千新玲,尹磊,赵景志,王重建. PSMD6基因rs831571位点多态性与2型糖尿病易感性的病例对照研究[J]. 山东大学学报 (医学版), 2018, 56(7): 51-56.
[12] 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32.
[13] 苏萍,杨亚超,杨洋,季加东,阿力木·达依木,李敏,薛付忠,刘言训. 健康管理人群2型糖尿病发病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 82-86.
[14] 李帅,王雅琳,孙忠文,朱梅佳. Nod样受体蛋白3炎性体在2型糖尿病脑微血管内皮细胞中的变化及变化机制[J]. 山东大学学报(医学版), 2017, 55(3): 6-11.
[15] 杨洋,张光,张成琪,宋心红,薛付忠,王萍,王丽,刘言训. 基于体检队列的2型糖尿病风险预测模型[J]. 山东大学学报(医学版), 2016, 54(9): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!